Quadratic Equations	Class - XI Mathematics
---------------------	--------------------------

JEE Main 2021

1.	Let p and q be two positive numbers such that $p+q=2$ and $p^4+q^4=272$. Then p and q are roots
	of the equation:

(A)
$$x^2 - 2x + 136 = 0$$

(B)
$$x^2 - 2x + 2 = 0$$

(C)
$$x^2 - 2x + 16 = 0$$

(D)
$$x^2 - 2x + 8 = 0$$

2. The number of the real roots of the equation
$$(x+1)^2 + |x-5| = \frac{27}{4}$$
 is ______.

The integer 'k', for which the inequality $x^2 - 2(3k - 1)x + 8k^2 - 7 > 0$ is valid for every x in R, is: 3.

4. Let
$$\alpha$$
 and β be the roots of $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{3a_9}$ is:

5. Let
$$\alpha$$
 and β be two real numbers such that $\alpha+\beta=1$ and $\alpha\beta=-1$. Let $p_n=(\alpha)^n+(\beta)^n$, $p_{n-1}=11$ and $p_{n+1}=29$ for some integer $n\geq 1$. Then, the value of p_n^2 is ______.

Let $f:[-1,1] \to R$ be defined as $f(x) = ax^2 + bx + c$ for all $x \in [-1,1]$, where $a,b,c \in R$ such that 6. f(-1) = 2, f'(-1) = 1 and for $x \in (-1, 1)$ the maximum value of f''(x) is $\frac{1}{2}$. If $f(x) \le \alpha$, $x \in [-1, 1]$, then the least value of α is equal to ___

7. The value of
$$3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{4 + \frac{1}{3 + \dots + + \frac{1}{3 + \dots + 1}}}}}}}}}}}}}}}}}}}}}}}}}}$$

(A)
$$2 + \sqrt{3}$$

(B)
$$3 + 2\sqrt{3}$$

(C)
$$4 + \sqrt{3}$$

(D)
$$1.5 + \sqrt{3}$$

8. The value of
$$4 + \frac{1}{5 + \frac{1}{4 + \frac{1}{5 + \frac{1}{4 + \dots \dots \infty}}}}$$
 is:

(A)
$$2 + \frac{4}{\sqrt{5}} \sqrt{30}$$

(B)
$$2 + \frac{2}{5}\sqrt{3}$$

$$2 + \frac{4}{\sqrt{5}}\sqrt{30}$$
 (B) $2 + \frac{2}{5}\sqrt{30}$ (C) $4 + \frac{4}{\sqrt{5}}\sqrt{30}$ (D) $5 + \frac{2}{5}\sqrt{30}$

(D)
$$5 + \frac{2}{5}\sqrt{30}$$

If α and β are the distinct roots of the equation $x^2 + (3)^{1/4} x + 3^{1/2} = 0$, then the value of 9. $\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)$ is equal to ;

(A)
$$28 \times 3^{25}$$

(B)
$$52 \times 3^{24}$$

(C)
$$56 \times 3^{25}$$

(D)
$$56 \times 3^{24}$$

- The number of solutions of the equation $\log_{(x+1)}(2x^2+7x+5) + \log_{(2x+5)}(x+1)^2 4 = 0$, x > 0, is _____. 10.
- If α , β are roots of the equation $x^2 + 5(\sqrt{2})x + 10 = 0$, $\alpha > \beta$ and $P_n = \alpha^n \beta^n$ for each positive integer n, 11. then the value of $\left(\frac{P_{17}P_{20} + 5\sqrt{2}P_{17}P_{19}}{P_{10}P_{10} + 5\sqrt{2}P_{10}^2}\right)$ is equal to ______.
- The number of real solutions of the equation, $x^2 |x| 12 = 0$ is: 12.
 - (A)

- 3 (D)
- If a+b+c=1, ab+bc+ca=2 and abc=3, then the value of $a^4+b^4+c^4$ is equal to ______. 13.
- Let α , β be two roots of the equation $x^2 + (20)^{1/4}x + (5)^{1/2} = 0$. Then $\alpha^8 + \beta^8$ is equal to : 14.
 - (A)

- The number of real roots of the equation $e^{4x} e^{3x} 4e^{2x} e^{x} + 1 = 0$ is equal to . 15.
- The number of pairs (a, b) of real numbers, such that whenever α is a root of the equation 16. $x^2 + ax + b = 0$, $\alpha^2 - 2$ is also a root of this equation is:

- The set of all values of k > -1, for which the equation $(3x^2 + 4x + 3)^2 (k + 1)$ $(3x^2 + 4x + 3)^2$ 17. $(3x^2 + 4x + 2) + k(3x^2 + 4x + 2)^2 = 0$ has real roots, is :
- [2, 3] **(B)** $\left(\frac{1}{2}, \frac{3}{2}\right] \{1\}$ **(C)** $\left[-\frac{1}{2}, 1\right]$ **(D)** $\left[1, \frac{5}{2}\right]$
- Let $\lambda \neq 0$ be in R. If α and β are roots of the equation $x^2 x + 2\lambda = 0$, and α and γ are the roots of 18. the equation $3x^2 - 10x + 27\lambda = 0$, then $\frac{\beta \gamma}{\lambda}$ is equal to ______.
- The sum of all integral values of k ($k \ne 0$) for which the equation $\frac{2}{x-1} \frac{1}{x-2} = \frac{2}{k}$ in x has no real 19. roots, is ____

JEE Advanced 2021

For $x \in \mathbb{R}$, the number of real roots of the equation $3x^2 - 4 \left| x^2 - 1 \right| + x - 1 = 0$ is ______. 1.

Qua	drati	c Equations				C	lass - X	(I Mathematics
JEE N	lain 2	022						
1.	The m	inimum value of	f the sum	n of the squares o	of the ro	ots of $x^2 + (3 -$	a)x +1 =	2 <i>a</i> is:
	(A)	4	(B)	5	(C)	6	(D)	8
2.	Let o	$\alpha, \beta(\alpha > \beta)$ be th	ne roots	of the quadra	tic equa	ation $x^2 - x - 4$	1 = 0 . If	$P_n = a^n - \beta^n, n \in \mathbb{N}$, then
	<u>P₁₅P₁</u>	6 - P ₁₄ P ₁₆ - P ₁₅ P ₁₃ P ₁₄	+ P ₁₄ P ₁₅	is equal to				
3.	The su	um of all the real	I roots of	the equation (e ²	² x – 4)(6	$e^{2x} - 5e^x + 1) =$	0 is:	
	(A)	log _e 3	(B)	$-\log_e 3$	(C)	log _e 6	(D)	-log _e 6
4.	Tho n	umber of distins	t roal roa	ots of the equatio	n v ⁷ -	7v 2 – 0 is:		
4.	(A)	5	(B)	7	(C)	1	(D)	3
-	If the	cum of the caus	aros of th	an reciprocals of	the reet	es a and 0 of th	o oguatio	n $3x^2 + \lambda x - 1 = 0$ is 15,
5.				ie reciprocais oi	the root	sα <i>ana</i> βοι in	e equatio	$11 3X + \lambda X - 1 = 0 15 15,$
	then ($6(\alpha^3 + \beta^3)^2$ is eq	ual to:					
	(A)	18	(B)	24	(C)	36	(D)	96
6.	Let a	$a,b \in R$ be such	that the	equation ax^2 –	2 <i>bx</i> +15	5=0 has a repo	eated roo	t α . If α and β are the
	roots	of the equation	$x^2 - 2bx$	$+21 = 0$, then α^2	$^2 + \beta^2$ is	equal to:		
	(A)	37	(B)	58	(C)	68	(D)	92
7.	The su	um of the cubes	of all the	roots of the equ	ation χ'	$4 - 3x^3 - 2x^2 + 3$	3x + 1 = 0	is
8.	Let α,	β be the roo	ts of t	he equation $_{\chi}$	$^2 - 4\lambda x$	$+5=0$ and α , γ	be the	roots of the equation
				= 0, $\lambda > 0$. If $\beta + \gamma$				
9.	The n	umber of distinc	t real roo	ots of $x^4 - 4x + 1$	= 0 .			
	(A)	4	(B)	2	(C)	1 81	(D)	0
10.	If the	sum of all the ro	ots of eq	uation e^{2x} –11e	^x – 45e ⁻	$-x + \frac{31}{2} = 0$ is 10	$\log_e p$, the	en <i>p</i> is equal
11.	to Let <i>f</i>		ıtic polyr	nomial such that	f(-2)	+ f(3) = 0. If or	ne of the	roots of $f(x) = 0$ is -1 ,
	then t	he sum of the ro	ots of f	(x) = 0 is equal t	:0:			
	(A)	11 3	(B)	$\frac{7}{3}$	(C)	13 3	(D)	14 3

- 12. The number of real solutions of $x^7 + 5x^3 + 3x + 1 = 0$ is equal to _____.
 - (A)
- 0
- (B)
- (C)
- 3
- (D)
- 5

|--|

JEE Main 2021

1.	Let $\alpha =$	$\max_{x \in \mathbf{R}} \left\{ 8^{2\sin 3x} . 4^4 \right.$	$\cos 3x$ a	$\operatorname{nd}\beta = \min_{x \in \mathbf{R}} \left\{ 8^{2 \sin \alpha} \right\}$	1 ^{3x} .4 ^{4 co}	s 3x		
	If $8x^2$	- <i>bx</i> + <i>c</i> = 0 is a q	uadratic	equation whose	roots ar	Te $\alpha^{1/5}$ and $\beta^{1/5}$, then th	ne value c – b is equal to:
	(A)	42	(B)	43	(C)	50	(D)	47
2.	cos ec1	8° is a root of the	e equatio	n:				
	(A)	$x^2 - 2x - 4 = 0$	(B)	$4x^2 + 2x - 1 = 0$) (C)	$x^2 - 2x + 4 = 0$	(D)	$x^2 + 2x - 4 = 0$

3. If $e^{(\cos^2 x + \cos^4 x + \cos^6 x +\infty)\log_e 2}$ satisfies the equation $t^2 - 9t + 8 = 0$, then the value of $\frac{2\sin x}{\sin x + \sqrt{3}\cos x} \left(0 < x < \frac{\pi}{2}\right)$ is:

$$\sin x + \sqrt{3} \cos x$$
 (2)
(A) $\sqrt{3}$ (B) $\frac{1}{2}$ (C) $\frac{3}{2}$ (D) $2\sqrt{3}$

4. Two vertical poles are 150 *m* apart and the height of one is three times that of the other. If from the middle point of the line joining their feet, an observer finds the angles of elevation of their top to be complementary, then the height of the shorter pole (in meters) is:

(A) 30 (B) 20 (C)
$$25\sqrt{3}$$
 (D) $20\sqrt{3}$
5. All possible values of $\theta = [0, 2\pi]$ for which $\sin 2\theta + \tan 2\theta > 0$ lie in :

(A) $\left(0, \frac{\pi}{2}\right) \cup \left(\pi, \frac{3\pi}{2}\right)$ (B) $\left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\pi, \frac{5\pi}{4}\right) \cup \left(\frac{3\pi}{2}, \frac{7\pi}{4}\right)$

(C)
$$\left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\frac{3\pi}{2}, \frac{11\pi}{6}\right)$$
 (D) $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\pi, \frac{7\pi}{6}\right)$

6. If 0 < x, $y < \pi$ and $\cos x + \cos y - \cos(x + y) = \frac{3}{2}$, then $\sin x + \cos y$ is equal to:

(A)
$$\frac{1-\sqrt{3}}{2}$$
 (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{1+\sqrt{3}}{2}$ (D) $\frac{1}{2}$

7. The number integral values of 'k' for which the equation $3 \sin x + 4 \cos x = k + 1$ has a solution, $k \in \mathbb{R}$ is _____.

8. If $\sqrt{3}(\cos^2 x) = (\sqrt{3} - 1)\cos x + 1$, the number of solutions of the given equation when $x \in \left[0, \frac{\pi}{2}\right]$ is _____.

9. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 20 seconds at the speed of 432 km/hour, the angle of elevation changes to 30°. If the jet plane is flying at a constant height, then its height is:

(A) $3600\sqrt{3}m$ (B) $1800\sqrt{3}m$ (C) $1200\sqrt{3}m$ (D) $2400\sqrt{3}m$

10. The number of solutions of the equation $x + 2\tan x = \frac{\pi}{2}$ in the internal $[0, 2\pi]$ is :

(A) 5 (B) 3 (C) 4 (D) 2

11.	The nu	umber of solution	ns of the	e equation cot x	$x = \cot x$	$+$ — in the $\sin x$	interval [0,	2π] is
12.	A pole	stands verticall	ly inside	e a triangular pa	ark ABC	. Let the ang	le of elevatio	on of the top of the pole
	from e	each corner of the	e park k	be $\frac{\pi}{3}$. If the radio	us of the	e circumcircle	of ∆ABC is	2, then the height of the
	pole is	equal to:				_		
	(A)	$\sqrt{3}$	(B)	2√3	(C)	$\frac{2\sqrt{3}}{3}$	(D)	$\frac{1}{\sqrt{3}}$
13.	If 15s	$\sin^4 \alpha + 10\cos^4 \alpha$	= 6, for	some $\alpha \in R$, the	n the va	lue of 27 sec ⁶	$\alpha + 8cosec^6$	α is equal to:
	(A)	400	(B)	250	(C)	500	(D)	350
14.	The n	umber of roots of	f the equ	uation, (81) ^{sin²} x	+ (81) ^{cos}	$^{2}x = 30$ in th	e interval [0	, π] is equal to :
	(A)	4	(B)	2	(C)	8	(D)	3
15.	The va	alue of $\cot \frac{\pi}{24}$ is:						
	(A)	$3\sqrt{2} - \sqrt{3} - \sqrt{6}$			(B)	$\sqrt{2} + \sqrt{3} + 3$	$2 - \sqrt{6}$	
	(C)	$\sqrt{2} - \sqrt{3} - 2 + \sqrt{3}$	6		(D)	$\sqrt{2} + \sqrt{3} + 3$ $\sqrt{2} + \sqrt{3} + 3$	$2 + \sqrt{6}$	
16.	If sin ($\theta + \cos \theta = \frac{1}{2}$, the	n 16(si	$n(2\theta) + \cos(4\theta) + \sin(2\theta) + \sin(2\theta) + \sin(2\theta) + \sin(2\theta) + \cos(2\theta) + \cos(2\theta$	sin(6θ))	is equal to :		
	(A)	-23	(B)	23	(C)	-27	(D)	27
17.	Let f	$: \mathbf{R} \to \mathbf{R}$ be defin	ed as					
	f(x+y)	y)+f(x-y)=2f(x)	κ) f (y), f	$\left(\frac{1}{2}\right) = -1$. Then,	the valu	$ue of \sum_{k=1}^{20} \frac{1}{\sin(k)}$	$\frac{1}{k)\sin(k+f(k))}$	– is equal to :))
	(A)	cosec ² (1)cosec	c(21)sin	(20)	(B)	co sec ² (21))cos(20)cos(2	2)
	(C)	sec ² (21)sin(20))sin(2)		(D)	sec ² (1)sec	(21)cos(20)	
18.	If tan	$\left(\frac{\pi}{9}\right)$, x , $\tan\left(\frac{7\pi}{18}\right)$	are ii	n arithmetic pro	gressior	and $\tan \left(\frac{\pi}{9}\right)$	$\left(\frac{5\pi}{18}\right)$, y, tan $\left(\frac{5\pi}{18}\right)$	are also in arithmetic
	progre	ession, then $ x -$	2y is	equal to :		`	, ,	
	(A)	1	(B)	0	(C)	3	(D)	4
19.	If n is	the number of so	olutions	of the equation	$2\cos x$	$4 \sin\left(\frac{\pi}{4} + x\right)$	$\sin\left(\frac{\pi}{4} - x\right) -$	1 = 1, $x \in [0, \pi]$ and S is
	the su	m of all these so	lutions,	then the ordere	d pair (<i>n</i>	, <i>S</i>) is:		
	(A)	$\left(2,\frac{8\pi}{9}\right)$	(B)	$\left(3,\frac{13\pi}{9}\right)$	(C)	$\left(3,\frac{5\pi}{3}\right)$	(D)	$\left(2,\frac{2\pi}{3}\right)$
20.	shorte	•	part. If	the two parts su	ubtend e	qual angles a	-	rk on it with lower part the ground 18 <i>m</i> away
	(A)	12√15	(B)	12√ <u>10</u>	(C)	6√10	(D)	8√10
21.	Let S	be the sum of a	II solut	ions (in radians)	of the	equation sin	$^4\theta + \cos^4\theta - \sin^4\theta$	$\sin\theta\cos\theta=0$ in $[0, 4\pi]$.
	Then	$\frac{8S}{\pi}$ is equal to _	•					

22. Two poles, AB of length a meters and CD of length $a+b(b\neq a)$ meters are erected at the same horizontal level with bases at B and D. If BD = x and $tan | \underline{ACB} = \frac{1}{2}$, then:

(A)
$$x^2 + 2(a+2b)x - b(a+b) = 0$$

(B)
$$x^2 - 2ax + a(a+b) = 0$$

(C)
$$x^2 - 2ax + b(a+b) = 0$$

(D)
$$x^2 + 2(a+2b)x + a(a+b) = 0$$

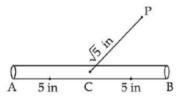
The value of $2\sin\left(\frac{\pi}{8}\right)\sin\left(\frac{2\pi}{8}\right)\sin\left(\frac{3\pi}{8}\right)\sin\left(\frac{5\pi}{8}\right)\sin\left(\frac{6\pi}{8}\right)\sin\left(\frac{7\pi}{8}\right)$ is: 23.

(A)
$$\frac{1}{4}$$

(B)
$$\frac{1}{4\sqrt{2}}$$
 (C) $\frac{1}{8\sqrt{2}}$ (D)

(C)
$$\frac{1}{8\sqrt{2}}$$

- A 10 inches long pencil AB with mid point C and a small eraser P are placed on the horizontal top of a 24. table such that $PC = \sqrt{5}$ inches and $\angle PCB = \tan^{-1}(2)$. The acute angle through which the pencil must be rotated about C so that the perpendicular distance between eraser and pencil becomes exactly 1 inch is:



- **(B)** $\tan^{-1}(1)$ **(C)** $\tan^{-1}\left(\frac{1}{2}\right)$ **(D)** $\tan^{-1}\left(\frac{3}{4}\right)$
- The sum of solutions of the equation $\frac{\cos x}{1+\sin x} = |\tan 2x|$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \left\{\frac{\pi}{4}, -\frac{\pi}{4}\right\}$ is: 25.
 - (A)
- (B) $-\frac{11 \pi}{30}$ (C) $-\frac{7 \pi}{30}$ (D) $\frac{\pi}{10}$

Trigonometry Class - XI | Mathematics

JEE Main 2022

1.	The number of solutions of the equation	cos	$\left(x+\frac{\pi}{3}\right)$	cos	$\left(\frac{\pi}{3}-x\right)$	$= \frac{1}{4}\cos^2 2x,$	$x\in [-3\pi,\ 3\pi]$	is:
----	---	-----	--------------------------------	-----	--------------------------------	---------------------------	-----------------------	-----

- (A)
- 5 (B)
- (C)
- (D) 7
- 2. absolute maximum and absolute minimum values the of function $f(x) = |2x^2 + 3x - 2| + \sin x \cos x$ in the interval [0, 1] is:
 - $3 + \frac{\sin(1)\cos^2\left(\frac{1}{2}\right)}{2}$ (A)

(B) $3 + \frac{1}{2}(1 + 2\cos(1))\sin(1)$

- (C) $5 + \frac{1}{2}(\sin(1) + \sin(2))$
- (D) $2 + \sin\left(\frac{1}{2}\right)\cos\left(\frac{1}{2}\right)$
- Let $S = \left\{\theta \in \left[-\pi, \pi\right] \left\{\pm \frac{\pi}{2}\right\}$: $\sin \theta \tan \theta + \tan \theta = \sin 2\theta\right\}$. If $T = \sum_{\theta \in G} \cos 2\theta$, then T + n(S) is equal to:
 - $7 + \sqrt{3}$
- (C) $8 + \sqrt{3}$ (D)

- 4. The value of $2\sin(12^\circ) - \sin(72^\circ)$ is:
 - (A) $\frac{\sqrt{5}(1-\sqrt{3})}{4}$ (B) $\frac{1-\sqrt{5}}{8}$ (C) $\frac{\sqrt{3}(1-\sqrt{5})}{2}$ (D) $\frac{\sqrt{3}(1-\sqrt{5})}{4}$

- The number of values of x in the interval $\left(\frac{\pi}{4}, \frac{7\pi}{4}\right)$ for which $14\cos ec^2x 2\sin^2x = 21 4\cos^2x$ holds, 5.
- 6. 16 sin(20°) sin(40°) sin(80°) is equal to:
 - $\sqrt{3}$ (A)
- **(B)** $2\sqrt{3}$
- **(C)** 3
- (D)
- If $\sin^2(10^\circ)\sin(20^\circ)\sin(40^\circ)\sin(50^\circ)\sin(70^\circ) = \alpha \frac{1}{16}\sin(10^\circ)$, then $16 + \alpha^{-1}$ is equal to ______.
- $\alpha = \sin 36^{\circ}$ is a root of which of the following equation? 8.
 - (A) $16x^4 10x^2 5 = 0$

(B) $16x^4 + 20x^2 - 5 = 0$

- (C) $16x^4 20x^2 + 5 = 0$
- **(D)** $16x^4 10x^2 + 5 = 0$
- The value of $\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$ is equal to: 9.
 - (A)

- (C) $-\frac{1}{3}$ (D) $-\frac{1}{4}$

10.	If cot o	$\alpha = 1$ and $\sec \beta =$	$=-\frac{5}{3}$, w	here $\pi < \alpha < \frac{3\pi}{2}$	and $\frac{\pi}{2}$	$<\beta<\pi$, then the	ne value	of $tan(\alpha +$	$+\beta$) and the
	quadra	ant in which $\alpha + \beta$	3 lies, re	spectively are:					
	(A)	$-\frac{1}{7}$ and IV^{th}	quadran	t	(B)	7 and IV th qua	adrant		
	(C)	-7 and <i>IVth</i> qu	adrant		(D)	$\frac{1}{7}$ and I^{st} quant	adrant		
11.	Let AB	and PQ be two v	ertical p	oles, 160 <i>m</i> apa	rt from e	ach other. Let C	be the r	middle poin	t of <i>B</i> and <i>Q</i> ,
	which	are feet of thes	se two p	poles. Let $\frac{\pi}{8}$ are	nd θ be	the angles of	elevatio	n from C	to P and A,
	respec	tively. If the heigl	nt of pole	PQ is twice the	height o	f pole <i>AB</i> , then	tan ² θ is	s equal to:	
	(A)	$\frac{3-2\sqrt{2}}{2}$	(B)	$\frac{3+\sqrt{2}}{2}$	(C)	$\frac{3-2\sqrt{2}}{4}$	(D)	$\frac{3-\sqrt{2}}{4}$	
12.	From t	he base of a pole	e of heigl	ht 20 meter, the	angle o	f elevation of th	e top of	a tower is 6	o0°. The pole
		ds an angle 30° a				_			
	(A)	15√3	(B)	20√3	(C)	20 +10√3	(D)	30	
13.	The nu	ımber of solution	s of the e	equation sin <i>x</i> =	cos ² x i	n the interval (0	, 10) is _	·	
14.		imber of element							
	,	$\in \left[-4\pi, 4\pi\right]: 3\cos$,			
15.	The nu	ımber of solution	s of the e	equation 2θ–co	$e^2 \theta + \sqrt{2}$	=0 in R is equal	al to	·	
16.	$2\sin\left(\frac{1}{2}\right)$	$\left(\frac{\pi}{22}\right) \sin\left(\frac{3\pi}{22}\right) \sin\left(3$	$\left(\frac{5\pi}{22}\right)$ sin	$\left(\frac{7\pi}{22}\right)\sin\left(\frac{9\pi}{22}\right)i$	is equal t	0:			
	(A)	3 16	(B)	1/16	(C)	1/32	(D)	9/32	
17.	Let a v	ertical tower AB	of heigh	t 2h stands on	a horizor	ntal ground. Let	from a p	point <i>P</i> on t	he ground a
		an see upto heigh							
		e direction of \overline{AP} is equal to:	, ne can	see the top B of	the towe	er with an angle	or eleva	tion α . If d	= √7 <i>h</i> , tnen
	(A)	$\sqrt{5}-2$	(B)	$\sqrt{3} - 1$	(C)	$\sqrt{7} - 2$	(D)	$\sqrt{7}-\sqrt{3}$	
18.	The nu	mber of solution	s of cos	$ x = \sin x$, such	that -4	$\pi \leq x \leq 4\pi$ is:			
	(A)	4	(B)	6	(C)	8	(D)	12	
19.	two pa	r PQ stands on a	? = 15m.	If from a point A	4 on the	ground the angl	e of eleva	ation of R is	
	(A)	R of the tower subset $(2\sqrt{2}+3)$ m	oterius ai	Trangle of 15 at			e tower is	5.	
		$5(2\sqrt{3}+3)m$				$5(\sqrt{3}+3) m$			
	(C)	$10\left(\sqrt{3}+1\right) m$			(D)	$10\left(2\sqrt{3}+1\right) m$			
20.	Let	$S = \left[-\pi, \frac{\pi}{2}\right] - \left\{-\frac{\pi}{2}\right\}$	$\frac{\tau}{2}$, $-\frac{\pi}{4}$, $-\frac{\tau}{2}$	$\frac{3\pi}{4}$, $\frac{\pi}{4}$. Then	n the	number o	f elem	nents in	the set
	$A = \left\{\theta\right\}$	$\in S$: $\tan \theta \Big(1 + \sqrt{5} \Big)$	tan(2θ))	$=\sqrt{5}-\tan(2\theta)$	is	·			

21. A horizontal park is in the shape of a triangle *OAB* with AB = 16. A vertical lamps post *OP* is erected at the point *O* such that $\angle PAO = \angle PBO = 15^{\circ}$ and $\angle PCO = 45^{\circ}$, where *C* is the midpoint of *AB*. Then $(OP)^2$ is equal to:

(A) $\frac{32}{\sqrt{3}} \left(\sqrt{3} - 1 \right)$ (B) $\frac{32}{\sqrt{3}} \left(2 - \sqrt{3} \right)$ (C) $\frac{16}{\sqrt{3}} \left(\sqrt{3} - 1 \right)$ (D) $\frac{16}{\sqrt{3}} \left(2 - \sqrt{3} \right)$

22. The angle of elevation of the top of a tower from a point A due north of it is α and from a point B at a distance of 9 units due west of A is $\cos^{-1}\left(\frac{3}{\sqrt{13}}\right)$. If the distance of the point B from the tower is 15 units, then $\cot \alpha$ is equal to:

(A) $\frac{6}{5}$ (B) $\frac{9}{5}$ (C) $\frac{4}{3}$ (D) $\frac{7}{3}$

- 23. Let $S = \{\theta \in (0, 2\pi) : 7\cos^2\theta 3\sin^2\theta 2\cos^22\theta = 2\}$. Then, the sum of roots of all the equations $x^2 2(\tan^2\theta + \cot^2\theta)x + 6\sin^2\theta = 0, \ \theta \in S, \text{ is}$
- 24. If the sum of solutions of the system of equations $2\sin^2\theta \cos 2\theta = 0$ and $2\cos^2\theta + 3\sin\theta = 0$ in the interval $[0, 2\pi]$ is $k\pi$, then k is equal to _____.
- 25. The angle of elevation of the top P of a vertical tower PQ of height 10 from a point A on the horizontal ground is 45°. Let R be a point on AQ and from a point B, vertically above R, the angle of elevation of P is 60° . If $\angle BAQ = 30^\circ$, AB = d and the area of the trapezium PQRB is α , then the ordered pair (d, α) is:

(A) $\left(10\left(\sqrt{3}-1\right), 25\right)$ (B) $\left(10\left(\sqrt{3}-1\right), \frac{25}{2}\right)$

(C) $\left(10\left(\sqrt{3}+1\right),25\right)$ (D) $\left(10\left(\sqrt{3}+1\right),\frac{25}{2}\right)$

26. Let $S = \left\{ \theta \in \left(0, \frac{\pi}{2}\right) : \sum_{m=1}^{9} \sec\left(\theta + \left(m-1\right)\frac{\pi}{6}\right) \sec\left(\theta + \frac{m\pi}{6}\right) = -\frac{8}{\sqrt{3}} \right\}$. Then

(A) $S = \left\{ \frac{\pi}{12} \right\}$ (B) $S = \left\{ \frac{2\pi}{3} \right\}$ (C) $\sum_{\theta \in S} \theta = \frac{\pi}{2}$ (D) $\sum_{\theta \in S} \theta = \frac{3\pi}{4}$

27. Let $S = \left\{ \theta \epsilon \left[0, 2\pi \right] : 8^{2\sin^2 \theta} + 8^{2\cos^2 \theta} = 16 \right\}$. Then

 $n(S) + \sum_{\theta \in S} \left(\sec \left(\frac{\pi}{4} + 2\theta \right) \cos \cot \left(\frac{\pi}{4} + 2\theta \right) \right)$ is equal to:

(A) 0 **(B)** -2 **(C)** -4 **(D)** 12

Sequence and Series	Class - XI Mathematics
---------------------	--------------------------

JEE Main 2021

1.	Let a, b, c be in arithmetic progression. Let the centroid of the triangle with vertices (a, c), (2, b) and (a,
	b) be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α , β are the roots of the equation $ax^2 + bx + 1 = 0$, then the value of $\alpha^2 + \beta^2 - \alpha\beta$ is:

- (A) $\frac{71}{256}$ (B) $-\frac{71}{256}$ (C) $\frac{69}{256}$ (D) $-\frac{69}{256}$
- The sum of first four terms of a geometric progression (G.P.) is $\frac{65}{12}$ and the sum of their respective 2. reciprocals is $\frac{65}{18}$. If the product of first three terms of the G.P. is 1, and the third term is α , then 2α

3. If
$$0 < \theta$$
, $\phi < \frac{\pi}{2}$, $x = \sum_{n=0}^{\infty} \cos^{2n}\theta$, $y = \sum_{n=0}^{\infty} \sin^{2n}\phi$ and $z = \sum_{n=0}^{\infty} \cos^{2n}\theta \sin^{2n}\phi$ then:

(A) xy-z=(x+y)z **(B)** Xy + yz + zx = z

(C)

- **(D)** xy + z = (x + y)z
- Let A_1 , A_2 , A_3 ,.... be squares such that for each $n \ge 1$, the length of the side of A_n equals the length 4. of diagonal of A_{n+1} . If length of A_1 is 12cm, then the smallest value of n for which area of A_n is less
- The minimum value of $f(x) = a^{a^x} + a^{1-a^x}$, where $a, x \in R$ and a > 0, is equal to: 5.
 - (A)

- (C) a+1 (D) $a+\frac{1}{a}$
- In an increasing geometric series, the sum of the second and the sixth term is $\frac{25}{2}$ and the product of 6. the third and fifth term is 25. Then, the sum of 4th, 6th and 8th terms is equal to :

- The sum of the infinite series $1 + \frac{2}{3} + \frac{7}{3^2} + \frac{12}{3^3} + \frac{17}{3^4} + \frac{22}{3^5} + \dots$ is equal to : 7.
 - (A)
- **(B)** $\frac{9}{4}$ **(C)** $\frac{15}{4}$

- The sum of the series $\sum_{n=1}^{\infty} \frac{n^2 + 6n + 10}{(2n+1)!}$ is equal to:
 - (A) $\frac{41}{8}e + \frac{19}{8}e^{-1} 10$

(B) $-\frac{41}{8}e + \frac{19}{8}e^{-1} - 10$

(C) $\frac{41}{9}e - \frac{19}{9}e^{-1} - 10$

- (D) $\frac{41}{8}e + \frac{19}{8}e^{-1} + 10$
- 9. If the arithmetic mean and geometric mean of the p^{th} and q^{th} terms of the sequence -16, 8, -4, 2,... satisfy the equation $4x^2 - 9x + 5 = 0$, then p + q is equal to _____

10. If 1, $\log_{10}(4^x - 2)$ and $\log_{10}\left(4^x + \frac{18}{5}\right)$ are in arithmetic progression for a real number x, then the value of

determinant
$$\begin{vmatrix} 2\left(x-\frac{1}{2}\right) & x-1 & x^2 \\ 1 & 0 & x \\ x & 1 & 0 \end{vmatrix}$$
 is equal to :

- 11. If α , β are natural numbers such that $100^{\alpha} 199\beta = (100)(100) + (99)(101) + (98)(102) + \dots + (1)(199)$, then the slope of the line passing through (α, β) and origin is:
 - **(A)** 540
- **(B)** 51
- **(C)** 550
- **(D)** 530

- 12. $\frac{1}{3^2-1} + \frac{1}{5^2-1} + \frac{1}{7^2-1} + \dots + \frac{1}{(201)^2-1}$ is equal to:
 - (A) $\frac{99}{400}$
- **(B)** $\frac{25}{101}$
- (C) $\frac{101}{404}$
- **(D)** $\frac{101}{408}$
- **13.** Let $\frac{1}{16}$, a and b be in G.P. and $\frac{1}{a}$, $\frac{1}{b}$, 6 be in A.P., where a, b > 0. Then 72(a+b) is equal to _____.
- 14. Let $S_n(x) = \log_{a^{1/2}} x + \log_{a^{1/3}} x + \log_{a^{1/6}} x + \log_{a^{1/11}} x + \log_{a^{1/18}} x + \log_{a^{1/27}} x + \dots$ upto *n*-terms, where a > 1. If $S_{24}(x) = 1093$ and $S_{12}(2x) = 265$, then value of a is equal to ______.
- 15. Let S_1 be the sum of first 2n terms of an arithmetic progression. Let S_2 be the sum of first 4n terms of the same arithmetic progression. If $(S_2 S_1)$ is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to:
 - **(A)** 1000
- **(B)** 3000
- **(C)** 5000
- **(D)** 7000
- 16. Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to _____.
- 17. If sum of the first 21 terms of the series $\log_{9\frac{1}{2}} x + \log_{9\frac{1}{3}} x + \log_{9\frac{1}{4}} x + \dots$, where x > 0 is 504, then x is equal to:
 - **(A)** 87
- B)
- **(C)** 243
- (D)
- **18.** For $k \in N$, let $\frac{1}{\alpha(\alpha+1)(\alpha+2)....(\alpha+20)} = \sum_{k=0}^{20} \frac{A_k}{\alpha+k}$, where $\alpha > 0$. Then the value of $100 \left(\frac{A_{14} + A_{15}}{A_{13}} \right)^2$ is equal to ______.
- 19. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1=1$, $a_2=1$ and $a_{n+2}=2a_{n+1}+a_n$ for all $n \ge 1$. Then the value of $47\sum_{n=1}^{\infty}\frac{a_n}{2^{3n}}$ is equal to ______.
- **20.** The sum of all the elements in the set $\{n \in \{1, 2, \dots, 100\} \mid H.C.F.$ of n and 2040 is 1} is equal to _____.
- 21. Let S_n be the sum of the first n terms of an arithmetic progression. If $S_{3n} = 3S_{2n}$, then the value of $\frac{S_{4n}}{S_{2n}}$ is:
 - **(A)** 8
- (B)
- (C)
- **(D)** 2

- 22. If the value of $\left(1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \dots + \text{upto}_{\infty}\right)^{\log_{(0.25)}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \text{upto}_{\infty}\right)}$ is I, then I^2 is equal to ______.
- 23. If [x] be the greatest integer less than or equal to x, then $\sum_{n=8}^{100} \left[\frac{(-1)^n n}{2} \right]$ is equal to:
 - (A) -2 (B) 0 (C) 2 (D) 4
- 24. If $\log_3 2$, $\log_3 (2^x 5)$, $\log_3 \left(2^x \frac{7}{2} \right)$ are in an arithmetic progression, then the value of x is equal to
- **25.** Let $S_n = 1 \cdot (n-1) + 2 \cdot (n-2) + 3 \cdot (n-3) + ... + (n-1) \cdot 1$, $n \ge 4$. The sum $\sum_{n=4}^{\infty} \left(\frac{2S_n}{n!} \frac{1}{(n-2)!} \right)$ is equal to:
 - (A) $\frac{e}{6}$ (B) $\frac{e-1}{3}$ (C) $\frac{e}{3}$ (D) $\frac{e-2}{6}$
- **26.** Let $a_1, a_2, ..., a_{21}$ be an AP such that $\sum_{n=1}^{20} \frac{1}{a_n a_{n+1}} = \frac{4}{9}$. If the sum of this AP is 189, then $a_6 a_{16}$ is equal
- to:
 (A) 48 (B) 72 (C) 57 (D) 36
- - (A) $\frac{143}{144}$ (B) $\frac{99}{100}$ (C) 1 (D) $\frac{120}{121}$
- **29.** Three numbers are in an increasing geometric progression with common ration r. If the middle number is doubled, then the new numbers are in an arithmetic progression with common difference d. If the fourth term of GP is 3 r^2 , then $r^2 d$ is equal to:
 - **(A)** $7-7\sqrt{3}$ **(B)** $7+\sqrt{3}$ **(C)** $7-\sqrt{3}$ **(D)** $7+3\sqrt{3}$
- **30.** If for $x, y \in R, x > 0$, $y = \log_{10} x + \log_{10} x^{1/3} + \log_{10} x^{1/9} + \dots$ upto ∞ terms and $\frac{2 + 4 + 6 + \dots + 2y}{3 + 6 + 9 + \dots + 3y} = \frac{4}{\log_{10} x}$, then the ordered pair (x, y) is equal to:
 - (A) $(10^6, 6)$ (B) $(10^2, 3)$ (C) $(10^6, 9)$ (D) $(10^4, 6)$
- 31. The sum of all 3-digit numbers less than or equal to 500, that are formed without using the digit "1" and they all are multiple of 11, is _____.
- 32. Let $a_1, a_2,, a_{10}$ be an AP with common difference 3 and $b_1, b_2, ..., b_{10}$ be a GP with common ratio 2. Let $c_k = a_k + b_k$, k = 1, 2, ..., 10. If $c_2 = 12$ and $c_3 = 13$, then $\sum_{k=1}^{10} c_k$ is equal to
- 33. If ${}^{1}P_{1} + 2 \cdot {}^{2}P_{2} + 3 \cdot {}^{3}P_{3} + \dots + 15 \cdot {}^{15}P_{15} = {}^{q}P_{r} s, 0 \le s \le 1$. then ${}^{q+s}C_{r-s}$ is equal to ______.
- 34. If the sum of an infinite GP a, ar, ar^2 , ar^3 , ... is 15 and the sum of the squares of its each term is 150, then the sum of ar^2 , ar^4 , ar^6 , ... is:
 - (A) $\frac{1}{2}$ (B) $\frac{9}{2}$ (C) $\frac{5}{2}$ (D) $\frac{25}{2}$

Sequence and Series	Class - XI Mathematics
---------------------	--------------------------

JEE Main 2022

1. The remainder on dividing $1+3+3^2+3^3+.....+3^{2021}$ by 50 is ______.

2. If $\{a_i\}_{i=1}^n$, where n is an even integer, is an arithmetic progression with common difference 1, and $\sum_{i=1}^n a_i = 192, \sum_{i=1}^{n/2} a_{2i} = 120$, then n is equal to:

(A) 48 **(B)** 96 **(C)** 92 **(D)** 104

3. The greatest integer less than or equal to the sum of first 100 terms of the sequence $\frac{1}{3}$, $\frac{5}{9}$, $\frac{19}{27}$, $\frac{65}{81}$, is equal to _____.

4. If $a_1(>0)$, a_2 , a_3 , a_4 , a_5 are in a G.P., $a_2+a_4=2a_3+1$ and $3a_2+a_3=2a_4$, then $a_2+a_4+2a_5$ is equal to ______.

5. Let $S = 2 + \frac{6}{7} + \frac{12}{7^2} + \frac{20}{7^3} + \frac{20}{7^3} + \frac{30}{7^4} + \dots$ Then 4S is equal to:

(A) $\left(\frac{7}{3}\right)^2$ (B) $\frac{7^3}{3^2}$ (C) $\left(\frac{7}{3}\right)^3$ (D) $\frac{7^2}{3^3}$

6. If a_1, a_2, a_3, \dots and b_1, b_2, b_3, \dots are A.P., and $a_1 = 2$, $a_{10} = 3$, $a_1b_1 = 1 = a_{10}b_{10}$, then a_4b_4 is equal to:

(A) $\frac{35}{27}$ (B) 1 (C) $\frac{27}{28}$ (D) $\frac{28}{27}$

7. If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$, where a, b, c are in A.P. and |a| < 1, |b| < 1, |c| < 1, $|abc \ne 0|$, then:

(A) x, y, z are in A.P. (B) x, y, z are in G.P.

(C) $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. (D) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 - (a + b + c)$

8. If the sum of the first ten terms of the series $\frac{1}{5} + \frac{2}{65} + \frac{3}{325} + \frac{4}{1025} + \frac{5}{2501} + \dots$ is $\frac{m}{n}$, where m and n are co-prime numbers, then m+n is equal to _____.

9. If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the least mean is 1:7 and a + n = 33, then the value of n is:

(A) 21 (B) 22 (C) 23 (D) 24

- Let for $n = 1, 2, \dots, 50, S_n$ be the sum of the infinite geometric progression whose first term is n^2 and 10. whose common ratio is $\frac{1}{(n+1)^2}$. Then the value of $\frac{1}{26} + \sum_{n=1}^{50} \left(S_n + \frac{2}{n+1} - n - 1 \right)$ is equal to _____.
- Let A_1, A_2, A_3, \dots be an increasing geometric progression of positive real numbers. If 11. $A_1 A_3 A_5 A_7 = \frac{1}{1296}$ and $A_2 + A_4 = \frac{7}{36}$, then, the value of $A_6 + A_8 + A_{10}$ is equal to:
 - (A)
- (B)
- (C)
- 47
- The sum of the infinite series $1 + \frac{5}{6} + \frac{12}{6^2} + \frac{22}{6^3} + \frac{35}{6^4} + \frac{51}{6^5} + \frac{70}{6^6} + \dots$ is equal to: 12.
 - (A)
- $\frac{429}{216}$ (C) $\frac{288}{125}$
- (D) 125
- Let 3, 6, 9, 12, ... upto 78 terms and 5, 9, 13, 17... upto 59 terms be two series. Then, the sum of the 13. terms common to both the series is equal to _____.
- Let $\left\{a_n\right\}_{n=0}^{\infty}$ be a sequence such that $a_0=a_1=0$ and $a_{n+2}=2a_{n+1}-a_n+1$ for all $n\geq 0$. Then, 14. $\sum_{n=2}^{\infty} \frac{a_n}{7^n}$ is equal to:
 - (A) $\frac{6}{343}$ (B) $\frac{7}{216}$ (C) $\frac{8}{343}$ (D) $\frac{49}{216}$

Complex Numbers

Class - XI | Mathematics

JEE Main 2021

- 1. If the least and the largest real values of α_i , for which the equation $z + \alpha |z-1| + 2i = 0$ $(z \in C \text{ and } i = \sqrt{-1})$ has a solution, are p and q respectively; then $4(p^2 + q^2)$ is equal to _____.
- Let $i = \sqrt{-1}$. If $\frac{(-1+i\sqrt{3})^{21}}{(1-i)^{24}} + \frac{(1+i\sqrt{3})^{21}}{(1+i)^{24}} = k$, and n = [|k|] be the greatest integral part of |k|. 2. Then $\sum_{j=0}^{n+5} (j+5)^2 - \sum_{j=0}^{n+5} (j+5)$ is equal to ______.
- Let the lines $(2-i)z = (2+i)\overline{z}$ and $(2+i)z + (i-2)\overline{z} 4i = 0$, (here $i^2 = -1$) be normal to a circle C. If 3. the line $iz + \overline{z} + 1 + i = 0$ is tangent to this circle C_i , then its radius is :

- **(B)** $3\sqrt{2}$ **(C)** $\frac{1}{2\sqrt{2}}$ **(D)** $\frac{3}{2\sqrt{2}}$
- If α , $\beta \in R$ are such that 1-2i (here $i^2=-1$) is a root of $z^2+\alpha z+\beta=0$, then $(\alpha-\beta)$ is equal to : 4.
 - (A)
- (B)
- (C)
- The sum of 162th power of the roots of the equation $x^3 2x^2 + 2x 1 = 0$ is ____ 5.
- Let z be those complex numbers which satisfy $|z+5| \le 4$ and $z(1+i) + \overline{z}(1-i) \ge -10$, $i = \sqrt{-1}$. 6. If the maximum value of $|z+1|^2$ is $\alpha + \beta\sqrt{2}$, then the value of $(\alpha + \beta)$ is ______.
- Let $S_{\mathbf{1}}$, $S_{\mathbf{2}}$ and $S_{\mathbf{3}}$ be three sets defined as : 7.

$$S_1 = \{z \in C : |z-1| \le \sqrt{2}\}$$

$$S_2 = \{z \in C : \text{Re}(1-i) \ge 1\}$$

$$S_3 = \{z \in C : Im(z) \le 1\}$$

Then the set $S_1 \cap S_2 \cap S_3$.

- (A) has exactly three elements
- (B) is a singleton
- has exactly two elements
- (D) has infinitely many elements
- If the equation $a |z|^2 + \overline{\alpha z + \alpha \overline{z}} + d = 0$ represents a circle where a, d are real constants, then 8. which of the following condition is correct?
 - $|\alpha|^2 ad > 0 \text{ and } a \in R \{0\}$ (A)
- **(B)** $\left|\alpha\right|^2 ad \neq 0$

 $\alpha = 0$, a, $d \in R^+$ (C)

(D) $|\alpha|^2 - ad \ge 0$ and $a \in R$

9.					-12 = 0 a	nd z_1, z_2 form a	n equilat	teral triangle with
10.		Then, the value east value of			nplex n	umber which	satisfies	s the inequality
		<u>z +3)(z -1)</u> log						, ,
	(A)	8	(B)	2	(C)	$\sqrt{5}$	(D)	3
11.	The are	ea of the triangle	with ve	rtices A(z), B(iz)	and C(z	+ <i>iz</i>) is:		
		$\frac{1}{2} z + iz ^2$				_	(D)	2
12.	Let a	complex number	er be	$w = 1 - \sqrt{3}i$. Let	anothe	r complex z b	e such	that $ zw = 1$ and
	arg(z)	$-\arg(w)=\frac{\pi}{2}$. The	en the a	rea of the triang	le with v	ertices origin, z a	and wis	equal to:
	(A)	$\frac{1}{2}$	(B)	4	(C)	2	(D)	<u>1</u> 4
13.	If $f(x)$) and $g(x)$ are tw	o polyn	omials such tha	t the pol	ynomial P(x) =	$f(x^3) + x$	$(g(x^3))$ is divisible
	by x^2	+ x +1, then P(1)	is equa	I to:				
14.	Let a c	complex number	Z, Z ≠	1, satisfy $\log_{\frac{1}{\sqrt{2}}}$	$\left(\frac{\mid z\mid +1}{(\mid z\mid -1)}\right)$	$\left \frac{1}{2}\right \le 2$. Then, t	he large:	st value of z is
	equal t	0						
	(A)	5	(B)	8	(C)		(D)	
15.	Let z	and w be two	complex	numhers such	that W	$z = z \ \overline{z} - 2z + 2, \left \frac{z}{z} \right $	$\left \frac{z+i}{z}\right =1$	and Re(w) has
		and W botter	•	CHambers sacri	triat 11	Z	- 31	and Re (W) has
		um value. Then,				I	- 1	
16.	minim	um value. Then,	the min	imum value of <i>n</i>	∈ N for	which w^n is rea	al, is equ	
16.	minimo	um value. Then,	the min	imum value of <i>n</i>	∈ N for	which w^n is rea	al, is equ	al to
16.	minimum If z arg $\left(\frac{1}{1}\right)$	um value. Then, $ \mbox{ are two } $	the min comple	imum value of <i>n</i> x numbers suc	e∈N for ch that	which w^n is real $ zw = 1$ and a	al, is equ	al to
16.	minimular $\int_{-\infty}^{\infty} dt dt$ and $\int_{-\infty}^{\infty} dt dt$ (Here a	um value. Then, $\frac{-2\overline{z}\omega}{+3\overline{z}\omega}$ is:	the min comple	imum value of <i>n</i> x numbers suc	e N for that complex i	which w^n is real $ zw = 1$ and a	al, is equive $z = a$	and to $\arg\left(\omega\right) = \frac{3\pi}{2}, \text{ then }$
16. 17.	minimum of z and $arg\left(\frac{1}{1}, \frac{1}{1}, \frac{1}, \frac{1}{1}, \frac{1}, \frac{1}, \frac{1}, \frac{1}, \frac{1}, \frac{1}, \frac{1}, \frac{1}, \frac{1}$	um value. Then, and ω are two $\frac{-2\overline{Z}\omega}{+3\overline{Z}\omega}$ is: $\frac{1}{2}\sin(z)$ denotes the $\frac{3\pi}{4}$	the min comple princip	imum value of n x numbers such all argument of $\frac{3\pi}{4}$	e N for th that complex (C)	which w^n is real part of $ z\omega = 1$ and a number z) $-\frac{\pi}{4}$	al, is equal $ rg(z) - a $ (D)	and to $\arg\left(\omega\right) = \frac{3\pi}{2}, \text{ then }$ $\frac{\pi}{4}$
	minimum of z and z and z (Here as z). If the z	um value. Then, and ω are two $\frac{-2\overline{Z}\omega}{+3\overline{Z}\omega}$ is: $\frac{1}{2}\sin(z)$ denotes the $\frac{3\pi}{4}$	the min comple princip (B) omplex	imum value of n x numbers such all argument of conditions $\frac{3\pi}{4}$ number (1-cos	e N for th that complex (C)	which w^n is real part of $ z\omega = 1$ and a number z) $-\frac{\pi}{4}$	al, is equal $ rg(z) - a $ (D)	and to $\arg\left(\omega\right) = \frac{3\pi}{2}, \text{ then }$
	minimum of the interest of th	um value. Then, and ω are two $\frac{-2\overline{z}\omega}{+3\overline{z}\omega}$ is: $\frac{-3\pi}{4}$ real part of the coegral $\int_0^{\theta} \sin x \ dx$	the min comple princip (B) omplex is equa	imum value of n x numbers such all argument of constant $\frac{3\pi}{4}$ number (1 – cosolito:	$e \in N$ for that complex e (C) e	which w^n is real pumber z) $-\frac{\pi}{4}$ $\theta)^{-1} \text{ is } \frac{1}{5} \text{ for } \theta$	(D) (D) (D)	and to $\arg\left(\omega\right) = \frac{3\pi}{2}, \text{ then }$ $\frac{\pi}{4}$ then the value of
	minimum of the interest of th	um value. Then, and ω are two $\frac{-2\overline{z}\omega}{+3\overline{z}\omega}$ is: $\frac{-3\pi}{4}$ real part of the coegral $\int_0^{\theta} \sin x \ dx$	the min comple princip (B) omplex is equa	imum value of n x numbers such all argument of constant $\frac{3\pi}{4}$ number (1 – cosolito:	$e \in N$ for that complex e (C) e	which w^n is real pumber z) $-\frac{\pi}{4}$ $\theta)^{-1} \text{ is } \frac{1}{5} \text{ for } \theta$	(D) (D) (D)	and to $\arg\left(\omega\right) = \frac{3\pi}{2}, \text{ then }$ $\frac{\pi}{4}$ then the value of
17.	minimum of z and z and z (Here as z). If the z the interval z (A). Let z z z	um value. Then, and ω are two $\frac{-2\overline{z}\omega}{+3\overline{z}\omega}$ is: $\frac{-3\pi}{4}$ real part of the coegral $\int_0^{\theta} \sin x \ dx$	the min comple princip (B) omplex is equal (B) omplex	imum value of n x numbers such all argument of contact $\frac{3\pi}{4}$ number (1–cos I to: 2 numbers. Let S_1	$e \in N$ for that complex e	which w^n is real pumber z) $-\frac{\pi}{4}$ $\theta^{n-1} \text{ is } \frac{1}{5} \text{ for } \theta$ $\frac{1}{5} z-3-2i ^2 = 8$	(D) $(C) = \{(0, \pi), (D)\}, S_2 = \{(0, \pi), (D)\}$	and to $\arg\left(\omega\right) = \frac{3\pi}{2}, \text{ then }$ $\frac{\pi}{4}$ then the value of 0 $\left\{z \in C \mid \operatorname{Re}(z) \geq 5\right\}$
17.	minimum of z and z and z (Here as z). If the z the interval z (A). Let z z z	um value. Then, and ω are two $\frac{-2\overline{z}\omega}{+3\overline{z}\omega}$ is: $\frac{3\pi}{4}$ real part of the coegral $\int_0^\theta \sin x \ dx$ are two	the min comple princip (B) omplex is equal (B) omplex	imum value of n x numbers such all argument of contact $\frac{3\pi}{4}$ number (1–cos I to: 2 numbers. Let S_1	$e \in N$ for that complex e	which w^n is real pumber z) $-\frac{\pi}{4}$ $\theta^{n-1} \text{ is } \frac{1}{5} \text{ for } \theta$ $\frac{1}{5} z-3-2i ^2 = 8$	(D) $(C) = \{(0, \pi), (D)\}, S_2 = \{(0, \pi), (D)\}$	and to $\arg\left(\omega\right) = \frac{3\pi}{2}, \text{ then }$ $\frac{\pi}{4}$ then the value of 0 $\left\{z \in C \mid \operatorname{Re}(z) \geq 5\right\}$

19. Let C be the set of all complex numbers. Let

$$S_1 = \{z \in \mathbb{C} : \mid z - 2 \mid \le 1\}$$
 and

$$S_2 = \{z \in \mathbb{C} : z(1+i) + \overline{z}(1-i) \ge 4\}$$

Then, the maximum value of $\left|z-\frac{5}{2}\right|^2$ for $z \in S_1 \cap S_2$ is equal to :

- (A) $\frac{3+2\sqrt{2}}{2}$ (B) $\frac{5+2\sqrt{2}}{4}$ (C) $\frac{3+2\sqrt{2}}{4}$ (D) $\frac{5+2\sqrt{2}}{2}$
- If the real part of the complex number $z = \frac{3 + 2i\cos\theta}{1 3i\cos\theta}$, $\theta \in \left(0, \frac{\pi}{2}\right)$ is zero, then the value of 20. $\sin^2 3\theta + \cos^2 \theta$ is equal to .
- If $S = \left\{ z \in \mathbb{C} : \frac{z i}{z + 2i} \in \mathbb{R} \right\}$, then: 21.
 - (A) S is a straight line in the complex plane (B) S is a circle in the complex plane
 - (C) S contains only one element
- (D) S contains exactly two elements
- The least positive integer n such that $\frac{(2i)^n}{(1-i)^{n-2}}$, $i=\sqrt{-1}$, is a positive integer, is ______. 22.
- If $(\sqrt{3} + i)^{100} = 2^{99}(p + iq)$, then p and q are roots of the equation: 23.

(A)
$$x^2 - (\sqrt{3} - 1)x - \sqrt{3} = 0$$

(B)
$$x^2 + (\sqrt{3} + 1)x + \sqrt{3} = 0$$

(C)
$$x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$$

(D)
$$x^2 + (\sqrt{3} - 1)x - \sqrt{3} = 0$$

Let $z = \frac{1 - i\sqrt{3}}{2}$, $i = \sqrt{-1}$. Then the value of 24.

$$21 + \left(z + \frac{1}{z}\right)^3 + \left(z^2 + \frac{1}{z^2}\right)^3 + \left(z^3 + \frac{1}{z^3}\right)^3 + \dots + \left(z^{21} + \frac{1}{z^{21}}\right)^3 \quad \text{is} \quad \underline{\hspace{1cm}}$$

- The equation $\arg \left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$ represents a circle with: 25.
 - centre at (0,0) and radius $\sqrt{2}$ (A)
- **(B)** centre at (0, 1) and radius $\sqrt{2}$
- centre at (0, -1) and radius $\sqrt{2}$ (C)
- (D) centre at (0,1) and radius 2
- 26. If for the complex numbers z satisfying $|z-2-2i| \le 1$, the maximum value of |3iz+6| is attained at a+ib, then a+b is equal to:
- A point z moves in the complex plane such that $\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{4}$, then the minimum value of 27. $|z-9\sqrt{2}-2i|^2$ is equal to

- If $a_r = \cos \frac{2r\pi}{9} + i \sin \frac{2r\pi}{9}$, $r = 1, 2, 3, ..., i = \sqrt{-1}$, then the determinant $\begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$ is equal to: 28.

- **(B)** $a_1 a_9 a_3 a_7$ **(C)** $a_2 a_6 a_4 a_8$ **(D)**
- Let z_1 and z_2 be two complex numbers such that $\arg(z_1-z_2)=\frac{\pi}{4}$ and z_1, z_2 satisfy the 29. equation |z-3| = Re(z). Then the imaginary part of $z_1 + z_2$ is equal to ______
- Let *n* denote the number of solutions of the equation $z^2 + 3\overline{z} = 0$, where z is a complex number. 30. Then the value of $\sum_{k=0}^{\infty} \frac{1}{n^k}$ is equal to:
 - (A)

(C)

(D)

JEE Advanced 2021

1. Let $\theta_1,\theta_2,....\theta_{10}$ be positive valued angles (in radian) such that $\theta_1+\theta_2+.....+\theta_{10}=2\pi$. Define the complex numbers $z_1=\mathrm{e}^{i\theta_1}$, $z_k=z_{k-1}\mathrm{e}^{i\theta_k}$ for $k=2,3,\ldots,10$, where $i=\sqrt{-1}$. Consider the statements P and Q given below:

$$P: |z_2 - z_1| + |z_3 - z_2| + \dots + |z_{10} - z_9| + |z_1 - z_{10}| \le 2\pi$$

$$Q: \left| z_2^2 - z_1^2 \right| + \left| z_3^2 - z_2^2 \right| + \dots + \left| z_{10}^2 - z_9^2 \right| + \left| z_1^2 - z_{10}^2 \right| \le 4\pi$$

Then,

- (A) P is TRUE and Q is FALSE
- (B) Q is TRUE and P is FALSE
- (C) both P and Q are TRUE
- (D) both P and Q are FALSE
- For any complex number w = c + id, let $arg(w) \in (-\pi, \pi)$, where $i = \sqrt{-1}$, Let α and β be real 2. numbers such that for all complex numbers z = x + iy satisfying $\arg\left(\frac{z + \alpha}{z + \beta}\right) = \frac{\pi}{4}$, the ordered pair (x, y) lies on the circle $x^2 + y^2 + 5x - 3y + 4 = 0$

Then which of the following statements is (ae) TRUE?

- (A) $\alpha = -1$
- (B)
- $\alpha\beta = 4$
- (C)
- (D)

Complex Numbers

Class - XI | Mathematics

JEE Main 2022

1. The α , β are the roots of the equation.

$$x^{2} - \left(5 + 3\sqrt{\log_{3} 5} - 5\sqrt{\log_{5} 3}\right) + 3\left(3\left(\log_{3} 5\right)^{\frac{1}{3}} - 5\left(\log_{5} 3\right)^{\frac{2}{3}} - 1\right) = 0, \text{ then the equation, whose roots are}$$

$$\alpha + \frac{1}{\beta}$$
 and $\beta + \frac{1}{\alpha}$, is:

(A)
$$3x^2 - 20x - 12 = 0$$

(B)
$$3x^2 - 10x - 4 = 0$$

(C)
$$3x^2 - 10x + 2 = 0$$

(D)
$$3x^2 - 20x + 16 = 0$$

2. Let
$$A = \{z \in C : 1 \le |z - (1+i)| \le 2\}$$
 and $B = \{z \in A : |z - (1-i)| = 1\}$. Then, $B : A = \{z \in C : 1 \le |z - (1+i)| \le 2\}$

is an empty set

- contains exactly two elements
- contains exactly three elements
- (D) is an infinite set

For $z \in C$ if the minimum value of $\left(\left|z - 3\sqrt{2}\right| + \left|z - p\sqrt{2}i\right|\right)$ is $5\sqrt{2}$, then a value of p is ______. 3.

(B)
$$\frac{7}{2}$$

(D)
$$\frac{9}{2}$$

Let $S = \{z \in \mathbb{C} : |z-3| \le 1 \text{ and } z(4+3i) + \overline{z}(4-3i) \le 24\}$. If $\alpha + i\beta$ is the point in S which is closest 4. to 4i, then $25(\alpha + \beta)$ is equal to _____.

Let Z_1 and Z_2 be two complex numbers such that $\overline{Z}_1 = i\overline{Z}_2$ and $\arg\left(\frac{Z_1}{\overline{Z}_2}\right) = \pi$. Then 5.

(A) arg
$$z_2 = \frac{\pi}{4}$$

arg
$$z_2 = -\frac{3\pi}{4}$$
 (

$$arg z_1 = \frac{\pi}{4}$$

arg
$$z_2 = \frac{\pi}{4}$$
 (B) arg $z_2 = -\frac{3\pi}{4}$ (C) arg $z_1 = \frac{\pi}{4}$ (D) arg $z_1 = -\frac{3\pi}{4}$

Let a circle C in complex plane pass through the point $z_1 = 3 + 4i$, $z_2 = 4 + 3i$ and $z_3 = 5i$. If $z \neq z_1$ 6. is a point on C such that the line through z and z_1 is perpendicular to the line through z_2 and z_3 , then arg(z) is equal to:

(A)
$$\tan^{-1}\left(\frac{2}{\sqrt{5}}\right) - \pi$$

(B)
$$\tan^{-1} \left(\frac{24}{7} \right) - \pi$$

(C)
$$\tan^{-1}(3) - \pi$$

(D)
$$\tan^{-1} \left(\frac{3}{4} \right) - \pi$$

7.	If $z^2 + z + 1 = 0$, $z \in C$. then $\left \sum_{n=1}^{15} \left(z^n + (-1)^n \frac{1}{z^n} \right)^2 \right $ is equal to
8.	Let $A = \left\{ z \in C : \left \frac{z+1}{z-1} \right < 1 \right\}$ and $B = \left\{ z \in C : \arg\left(\frac{z-1}{z+1}\right) = \frac{2\pi}{3} \right\}$.

- (A) A portion of a circle centred at $\left(0, -\frac{1}{\sqrt{3}}\right)$ that lies in the second and third quadrants only
- **(B)** A portion of a circle centred at $\left(0, -\frac{1}{\sqrt{3}}\right)$ that lies in the second quadrant only
- (C) An empty set

Then $A \cap B$ is:

- (D) A portion of a circle of radius $\frac{2}{\sqrt{3}}$ that lies in the third quadrant only
- **9.** The number of points of intersection of $\left|z-\left(4+3i\right)\right|=2$ and $\left|z\right|+\left|z-4\right|=6$, $z\in\mathbb{C}$, is:
 - (A) 0 (B) 1 (C) 2 (D) 3
- 10. Let for some real numbers α and β $a = \alpha i\beta$. If the system of equations 4ix + (1+i)y = 0 and $8\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)x + \frac{-i}{3}x +$
 - (A) $-2+\sqrt{3}$ (B) $2-\sqrt{3}$ (C) $2+\sqrt{3}$ (D) $-2-\sqrt{3}$
- 11. The area of the polygon, whose vertices are the non-real roots of the equation $\bar{z} = iz^2$ is:
 - (A) $\frac{3\sqrt{3}}{4}$ (B) $\frac{3\sqrt{3}}{2}$ (C) $\frac{3}{2}$
- 12. Let $A = \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix}$ where $i = \sqrt{-1}$.

 Then, the number of elements in the set $\{n \in \{1, 2, ..., 100\} : A^n = A\}$ is ______.
- 13. Sum of squares of modulus of all the complex numbers z satisfying $\overline{z} = iz^2 + z^2 z$ is equal to ______.
- **14.** The number of elements in the set $\{z = a + ib \in C : a, b \in Z \text{ and } 1 < |z-3+2i| < 4\}$ is ______.
- 15. Let α be a root of the equation $1+x^2+x^4=0$. Then the value of $\alpha^{1011}+\alpha^{2022}-\alpha^{3033}$ is equal to:
 - (A) 1 (B) α (C) $1+\alpha$ (D) $1+2\alpha$
- 16. Let arg(z) represent the principal argument of the complex number z. Then, |z|=3 and $arg(z-1)-arg(z+1)=\pi/4$ intersect.
 - (A) Exactly at one point (B) Exactly at two points
 - (C) Nowhere (D) At infinitely many points

- Let α and β be the roots of the equation $x^2 + (2i 1) = 0$ Then, the value of $|\alpha^8 + \beta^8|$ is equal to: 17.
 - (A)
- (C)
- Let $S = \{z \in \mathbb{C} : |z-2| \le 1, z(1+i) + \overline{z}(1-i) \le 2\}$. Let |z-4i| attains minimum and maximum 18. values, respectively, at $z_1 \in S$ and $z_2 \in S$. If 5 $\left(\mid z_1 \mid^2 + \mid z_2 \mid^2 \right) = \alpha + \beta \sqrt{5}$. Where α and β are integers, then the value of $\alpha + \beta$ is equal to _____
- Let the minimum value v_0 of $v = \left|z\right|^2 + \left|z 3\right|^2 + \left|z 6i\right|^2$, $z \in \mathbb{C}$ is attained at $z = z_0$. Then 19. $\left|2z_0^2 - \overline{z}_0^3 + 3\right|^2 + v_0^2$ is equal to:
- (B) 1024
- (D) 1196
- Let $S = \{z \in \mathbb{C} : z^2 + \overline{z} = 0\}$. Then $\sum_{z \in S} (\text{Re}(z) + \text{Im}(z))$ is equal to _____. 20.
- For $n \in \mathbb{N}$, let $S_n = \left\{ z \in \mathbb{C} : |z 3 + 2i| = \frac{n}{4} \right\} \& T_n = \left\{ z \in \mathbb{C} : |z 2 + 3i| = \frac{1}{n} \right\}$. Then the number of 21. elements in the set $\{n \in \mathbb{N} : S_n \cap T_n = \emptyset\}$ is:
 - (A)
- (C)
- (D)
- Let $A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ & B = A I. If $\omega = \frac{\sqrt{3}i 1}{2}$, then the number of elements in the set 22. $\{n \in \{1, 2, ..., 100\}: A^n + (\omega B)^n + A + B\}$ is equal to _____
- Let z = a + ib, $b \neq 0$ be complex numbers satisfying $z^2 = \overline{z} \cdot 2^{1-|z|}$. Then the least value of $n \in N$, 23. such that $z^n = (z+1)^n$, is equal to _____
- If $z \neq 0$ be a complex number such that $\left| z \frac{1}{z} \right| = 2$, then the maximum value of $\left| z \right|$ is: 24.
- (C) $\sqrt{2} 1$
- Let $S = \left\{z = x + iy : \left|z 1 + i\right| \ge \left|z\right|, \left|z\right| < 2, \left|z + i\right| = \left|z 1\right|\right\}$. Then the set of all values of x, for which 25. $w = 2x + iy \in S$ for some $y \in \mathbb{R}$, is:
 - (A) $\left(-\sqrt{2}, \frac{1}{2\sqrt{2}}\right]$ (B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{4}\right]$ (C) $\left(-\sqrt{2}, \frac{1}{2}\right]$ (D) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}\right]$

- If z = x + iy satisfies |z| 2 = 0 and |z i| |z + 5i| = 0, then 26.
 - (A) x + 2y 4 = 0

(B) $x^2 + v - 4 = 0$

x + 2y + 4 = 0(C)

(D) $x^2 - y + 3 = 0$

27. Let S be the set of all (α, β) , $\pi < \alpha, \beta < 2\pi$, for which the complex number $\frac{1 - i \sin \alpha}{1 + 2i \sin \alpha}$ is purely imaginary and $\frac{1 + i \cos \beta}{1 - 2i \cos \beta}$ is purely real. Let $Z_{\alpha\beta} = \sin 2\alpha + i \cos 2\beta$, $(\alpha, \beta) \in S$.

Then $\sum_{(\alpha,\beta)\in S} \left(iZ_{\alpha\beta} + \frac{1}{i\overline{Z}_{\alpha\beta}}\right)$ is equal to:

- **(A)** 3
- **(B)** 3
- **(C)** 1
- **(D)** 2-i
- 28. Let O be the origin and A be the point $z_1 = 1 + 2i$. If B is the point z_2 , $Re(z_2) < 0$, such that OAB is a right angled isosceles triangle with OB as hypotenuse, then which of the following is NOT true?
 - (A) $\arg z_2 = \pi \tan^{-1} 3$

(B) $\arg(z_1 - 2z_2) = -\tan^{-1}\frac{4}{3}$

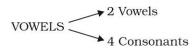
(C) $|z_2| = \sqrt{10}$

(D) $|2z_1 - z_2| = 5$

Per	mutat	ion and Co	mbina	ition	Class - XI Mathematics							
JEE N	Vlain 20	021										
1.	Indian							ncludes at least 2 ays, the committee 1050				
2.	The students $S_1, S_2,, S_{10}$ are to be divided into 3 groups A , B and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities of forming such groups is The total number of positive solutions (x, y, z) such that $xyz = 24$ is:											
3.			oositive s	olutions (x, y, z)		nat xyz = 2						
4.				•				24 with the digits 1, y either 3 or 5, is				
5.			ote the to	of one-one function of one $y = 91x$	e-one	functions t	from the set A	s to a set B with 5 to the set $A \times B$. y = 273x				
6.	The to	ital number of t	two diait	numbers 'n', such	that 3	n + 7 ⁿ is a	multiple of 10	is				
7.	The n		n digit in					med by using the				
	(A)	35	(B)	82	(C)	77	(D)	42				
8.	A natu	ural number h	as prime	factorization give	n by r	$\gamma = 2^x 3^y 5^z$	where y and	z are such that				
	$y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}$, $y>z$. Then the number of odd divisors of n , including 1, is:											
	(A)	6 <i>x</i>	(B)	6	(C)	11	(D)	12				
9.	Let $A = \{1, 2, 3,, 10\}$ and $f: A \rightarrow A$ be defined as $f(k) = \begin{cases} k+1 & \text{if } k \text{ is odd} \\ k & \text{if } k \text{ is even} \end{cases}$											
	Then t	the number of p	possible f	functions $g: A \rightarrow$	A such	n that <i>gof</i>	= f is:					
	(A)	10 ⁵	(B)	5!	(C)	5 ⁵	(D)	¹⁰ C ₅				
10.	The t	otal number	of 4-dio	git numbers wh	ose gr	reatest co	mmon divisor	with 18 is 3,				

(A)	122234	ne 4-digit disti (B)	122664	(C)	26664	(D)	22264
		times the di					
is					-		
BC, I vertic	DA respection ces and β	angle ABCD havely. Let α be the number $3-\alpha$) is equal	the number per of quadr	of triangles	having these	points from	different side
(A)	1890	(B)	1173	(C)	717	(D)	795
matc	hes can be	s of 7 boys ar arranged bet girl, then <i>n</i> is e	ween these		•	•	
(A)	5	(B)	2	(C)	4	(D)	6
If the	series AB,	BC and CA of	a triangle A	BC have 3, 5	and 6 interi	or points res	pectively, ther
	number of	triangles that		tructed using	•	rtices, is equ	al to :
(A)	364	(B)	333	(C)	360	(D)	240
at lea	ast 4 bowler digits are umber of a	The number of rs, 5 batsmen not allowed to II numbers gre	and 1 wicke repeat in ar eater than 10	tkeeper, is _ ny number fo 0,000 is equa	ormed by usi	ng the digits	0, 2, 4, 6, 8,
		2, 3, 4, 5, 6, f(3) is equal t		e number o	f bijective fu	inctions f:	$A \rightarrow A$ such
of wa	ıys, in whic	lents in class h 10 students at most 5 stud	can be selec	cted from the	em so as to ir	nclude at leas	st 2 students
If ⁿ F	$P_r = {}^n P_{r+1}$ au	$nd^n C_r = {}^n C_{r-}$	1 , then the v	value of r is	equal to:		
(A)	3	(B)	4	(C)	2	(D)	1
		4, 5, 6, 7}. The f(n) for every					$S \rightarrow S$ such
•		•			•		1 " - 5 + 1
		gative integer. B) ¹³ is equal t			visors of the	form "4n +	i" of the nur
					hoolessed or	a wall as fam.	ward Far ave
2855	82 is a six	lled a palindro					
IS	·						
		three-digit eve wed, is		formed by t	the digits 0,	1, 3,4, 6, 7 i	if the repetitic
	that has t	nents, with or wo R appearii	ng together.	The arrange		sted serially	in the alphal

- Let $P_1, P_2, \dots P_{15}$ be 15 points on a circle. The number of distinct triangles formed by points 26. P_i , P_i , P_k such that $i + j + k \neq 15$, is:
 - (A) 419
- (B) 455
- (C) 12
- (D) 443
- 27. The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is ______.



JEE Advanced 2021

1. Let

$$\begin{split} S_1 &= \{(i,\ j,\,k): i,\,j,k\in\{1,2,...,10\}\}\\ \\ S_2 &= \{(i,\ j): 1\leq i< j+2\leq 10, i,\ j\in\{1,\,2,...,10\}\},\\ \\ S_3 &= \{(i,\ j,\,k,\,l): 1\leq i< j< k< l,\,i,\,j,k,\,l\in\{1,\,2,...,10\}\} \end{split}$$

and

$$S_4 = \{(i, j, k, l) : i, j, k \text{ and } l \text{ are distinct elements in } \{1, 2, \dots 10\}\}.$$

If the total number of elements in the set S_r is n_r , r = 1, 2, 3, 4, then which of the following statements is (are) TRUE?

- $n_1 = 1000$ (A)

- **(B)** $n_2 = 44$ **(C)** $n_3 = 220$ **(D)** $\frac{n_4}{12} = 420$

Peri	mutati	on and Con	nbinat	ion	Class - XI Mathematics						
JEE N	1ain 20)22									
1.		mber of 7-digit r		which are mult	iples of 1	1 and are fo	ormed using	all the digits 1, 2,			
2.	The su	m of all the elem	ents of t	he set $\{\alpha \in \{1, 2, \}\}$,100}	: HCF(α,24)	=1} is				
3.	In an examination, there are 5 multiple choice questions with 3 choices, out of which exactly one is correct. There are 3 marks for each correct answer, – 2 marks for each wrong answer and 0 mark if the question is not attempted. Then, the number of ways a student appearing in the examination gets 5 marks is The total number of three-digit numbers, with one digit repeated exactly two times, is										
4.	The tot	al number of thr	ree-digit	numbers, with a	ne digit	repeated exa	actly two tim	nes, is			
5.	The nu	mber of 3-digit of	odd numl	bers, whose sun	n of digit	s is a multip	le of 7, is	·			
6.	The tot	al number of 3-c	digit num	nbers, whose gre	atest co	mmon diviso	r with 36 is	2, is			
7.	There a	are ten boys B_1 ,	B ₂ ,	., B_{10} and five g	irls G_1, G_2	$G_2,, G_5$ in	a class. Th	nen the number of			
	ways c	of forming a gro	oup cons	sisting of three	boys an	d three girl	s, if both	B_1 and B_2 together			
	should	not be the mem	bers of a	group, is	·						
8.	The nu	mber of ways, 1	6 identic	al cubes, of whi	ch 11 ar	e blue and re	est are red,	can be placed in a			
	row so	that between an	y two red	d cubes there sh	ould be	at least 2 blu	ue cubes, is	·			
9.	The nu	mber of ways to	distribu	te 30 identical o	candies a	mong four o	children C_1 ,	C_2 , C_3 and C_4 so			
	that C	_	st 4 and	atmost 7 candie	es, C ₃ re	eceives atlea	st 2 and atr	nost 6 candies, is			
	·		(B) 615		(C)	510	(D)	430			
10.	(A) 205 (B) 615 (C) 510 (D) 430 Suppose a class has 7 students. The average marks of these students in the mathematics examination is 62, and their variance is 20. A student fails in the examination if he/she gets less than 50 marks, then in worst case, the number of students can fail is										
11.	If the s $2x + 3y$ $x + y + y$ $x - y + y$	ystem of linear $e^{y-z} = -2$ z = 4 $ \lambda z = 4\lambda - 4$	equations	S.							
		$\lambda \in R$, has no so		nen:				2			
	(A)	$\lambda = 7$	(B)	$\lambda = -7$	(C)	$\lambda = 8$	(D)	$\lambda^2 = 1$			

12.	The total number of 5-digit numbers, formed by using the digits 1, 2, 3, 5, 6, 7 without repetition, which are multiple of 6, is:									
	(A)	36	(B)	48	(C)	60	(D)	72		
13.		al number of fous	•	numbers such t	hat each	of first three	digits is d	ivisible by the last		
14.	Let b ₁ k	$b_2b_3b_4$ be a 4-el	ement p	ermutation with	$b_i \in \{1, 2\}$	2,3,,100} f	or $1 \le i \le i$	4 and $b_i \neq b_j$ for		
	i≠j,s	such that either	b ₁ ,b ₂ ,b	3 are consecutiv	ve intege	ers or b_2, b_3, b	₄ are cor	secutive integers.		
	Then th	ne number of suc	ch perm	utations <i>b₁b₂b₃k</i>	0 ₄ is equ	ual to	·			
15.	either	an alphabet fro	om { <i>A</i> , <i>E</i>	B,C,D,E or a	number	from {1,2,3,4	1,5 with	each character is the repetition of acter is a number		
		$\{1, 2, 3, 4, 5\}$ is $\alpha \times 5$								
16.		ters of the word n English diction			·		`	ged in serial order 		
17.		umber of natura 2, 3, 4, 5, 6 (repe		3 0				formed using the		
18.		ers are to be form and 6 without re					•	ing the digits 1, 2, rs is		
19.	The nu	mber of 5-digit r	atural r	numbers, such th	nat the p	product of their	digits is	36, is		

Binomial Theorem

Class - XI | Mathematics

JEE Main 2021

1. The value of
$$-^{15}C_1 + 2^{\cdot 15}C_2 - 3^{\cdot 15}C_3 + \dots - 15^{\cdot 15}C_{15} + ^{14}C_1 + ^{14}C_3 + ^{14}C_5 + \dots + ^{14}C_{11}$$
 is:

(A) $2^{13} - 14$ (B) $2^{13} - 13$ (C) 2^{14} If $n \ge 2$ is a positive integer, then the sum of the series 2.

$$^{n+1}C_2 + 2(^2C_2 + ^3C_2 + ^4C_2 + \dots + ^nC_2)$$
 is:

(A)
$$\frac{n(n+1)^2(n+2)}{12}$$
 (B) $\frac{n(n+1)(2n+1)}{6}$ (C) $\frac{n(n-1)(2n+1)}{6}$ (D) $\frac{n(2n+1)(3n+1)}{6}$

For integers n and r, let $\binom{n}{r} = \begin{cases} {}^{n}C_{r}, & \text{if } n \geq r \geq 0 \\ 0, & \text{otherwise} \end{cases}$. The maximum value of k for which the sum 3.

$$\sum_{i=0}^{k} {10 \choose i} {15 \choose k-1} + \sum_{i=0}^{k+1} {12 \choose i} {13 \choose k+1-i}$$
 exists, is equal to _____.

If the remainder when x is divided by 4 is 3, then the remainder when $(2020 + x)^{2022}$ is divided 4. by 8 is _____ .

The maximum value of the term independent of 't' in the expansion of $\left[tx^{1/5} + \frac{(1-x)^{1/10}}{t}\right]^{1/2}$ 5.

where $x \in (0, 1)$ is:

(A)
$$\frac{2.10!}{3(5!)^2}$$

(B)
$$\frac{10!}{3(5!)^2}$$

(C)
$$\frac{10!}{\sqrt{3}(5!)^2}$$

$$\frac{2.10!}{3(5!)^2}$$
 (B) $\frac{10!}{3(5!)^2}$ (C) $\frac{10!}{\sqrt{3}(5!)^2}$ (D) $\frac{2.10!}{\sqrt{3}(5!)^2}$

Let $m, n \in \mathbb{N}$ and gcd(2, n) = 1. If $30 \binom{30}{0} + 29 \binom{30}{1} + \dots + 2 \binom{30}{28} + 1 \binom{30}{29} = n \cdot 2^m$, then n + m is 6. equal to _____. $\left(\operatorname{Here} \binom{n}{k} = {}^{n}C_{k} \right)$

The value of $\sum_{r=0}^{6} ({}^{6}C_{r} \cdot {}^{6}C_{6-r})$ is equal to : 7.

- (A) 924
- (B) 1024
- (C) 1124
- (D) 1324

Let the coefficients of third, fourth and fifth terms in the expansion of $\left(x + \frac{a}{x^2}\right)^n$, $x \ne 0$, be in the 8. ratio 12:8:3. Then the term independent of x in the expansion, is equal to ___

9. Let
$$(1+x+2x^2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}$$
. Then, $a_1 + a_3 + a_5 + \dots + a_{37}$ is equal to:

(A)
$$2^{19}(2^{20}-21)$$

(B)
$$2^{19}(2^{20} + 21)$$

(C)
$$2^{20}(2^{20}-21)$$

(D)
$$2^{20}(2^{20} + 21)$$

10. Let *n* be a positive integer. Let
$$A = \sum_{k=0}^{n} (-1)^k {}^n C_k \left[\left(\frac{1}{2} \right)^k + \left(\frac{3}{4} \right)^k + \left(\frac{15}{8} \right)^k + \left(\frac{31}{32} \right)^k \right]$$
. If $63A = 1 - \frac{1}{2^{30}}$, then *n* is equal to ______.

- **11.** If (2021)³⁷⁶² is divided by 17, then the remainder is_____
- 12. If the fourth term in the expansion of $(x + x^{\log_2 x})^7$ is 4480, then the value of x where $x \in \mathbb{N}$ is equal to:
 - **(A)** 3
- **(B)** 1
- (C)
- (D)
- 13. Let ${}^{n}C_{r}$ denote the binomial coefficient of x^{r} in the expansion of $(1+x)^{n}$. If

$$\sum_{k=0}^{10} (2^2+3k)^n C_k = \alpha.3^{10}+\beta.2^{10}, \, \alpha,\beta \in R \text{ , then } \alpha+\beta \text{ is equal to:}$$

- 14. If $\sum_{r=1}^{10} r! (r^3 + 6r^2 + 2r + 5) = \alpha(11!)$, then the value of α is equal to:
- **15.** The term independent of x in the expansion of $\left[\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right]^{10}$, $x \ne 1$, is equal to:
- 16. If n is the number of irrational terms in the expansion of $(3^{1/4} + 5^{1/8})^{60}$, then (n-1) is divisible by:
 - (A)

7

- **(B)** 30
- (C)
- **(D)** 2
- 17. Let [x] denote greatest integer less than or equal to x. If for $n \in \mathbb{N}$, $(1-x+x^3)^n = \sum_{j=0}^{3n} a_j x^j$,

then
$$\sum_{j=0}^{\left[\frac{3n}{2}\right]} a_{2j} + 4 \sum_{j=0}^{\left[\frac{3n-1}{2}\right]} a_{2j+1}$$
 is equal to :

- **(A)** 1
- **B)** 2ⁿ⁻
- **C)** 2
- **o)** n
- **18.** The coefficient of x^{256} in the expansion of $(1-x)^{101}(x^2+x+1)^{100}$ is:
 - (A) $^{100}C_{16}$
- **(B)** $^{100}C_{15}$
- (C) $-^{100}C_{15}$
- **(D)** $-^{100}C_{16}$
- **19.** The number of rational terms in the binomial expansion of $\left(4^{\frac{1}{4}} + 5^{\frac{1}{6}}\right)^{120}$ is _____.

20.	For	the	natural	numbers	m, n,	if	$(1-y)^m (1+y)^n = 1 + a_1y + a_2y^2 + + a_{m+n}y^{m+n}$	and
	a ₁ =	a ₂ =	10, then t	he value of	(m+n)	is e	qual to:	

- The number of elements in the set $\{n \in \{1, 2, 3, \dots, 100\} \mid (11)^n > (10)^n + (9)^n\}$ is _____. 21.
- If the constant term, in binomial expansion of $\left(2x^r + \frac{1}{x^2}\right)^{10}$ is 180, then r is equal to _____. 22.
- If b is very small as compared to the value of a, so that the cube and other higher powers of $\frac{b}{a}$ 23. can be neglected in the identify $\frac{1}{a-b} + \frac{1}{a-2b} + \frac{1}{a-3b} + \dots + \frac{1}{a-nb} = \alpha n + \beta n^2 + \gamma n^3$, then the value of γ is:
- (B) $\frac{a^2+b}{3a^3}$ (C) $\frac{a+b^2}{3a^3}$ (D) $\frac{b^2}{3a^3}$
- The ratio of the coefficient of the middle term in the expansion of $(1+x)^{20}$ and the sum of the 24. coefficients of two middle terms in expansion of $(1 + x)^{19}$ is:
- The term independent of 'x' in the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{y-y^{1/2}}\right)^{10}$, where $x \neq 0,1$ is 25.
- The lowest integer which is greater than $\left(1 + \frac{1}{10^{100}}\right)^{10^{100}}$ is _____. 26.
 - (A) 2
- (B)
- (C)
- If the greatest value of the term independent of 'x' in the expansion of $\left(x \sin \alpha + a \frac{\cos \alpha}{v}\right)^{10}$ is 27. $\frac{10!}{(5!)^2}$, then the value of 'a' is equal to:
 - (A)
- (B)
- (C)
- (D)
- The sum of all those terms which are rational numbers in the expansion of $\left(2^{1/3} + 3^{1/4}\right)^{12}$ is: 28.
 - (A) 27
- 89 (B)
- (C)
- Let $n \in \mathbb{N}$ and [x] denote the greatest integer less than or equal to x. If the sum of (n+1) terms 29. ${}^{n}C_{0}$, $3 \cdot {}^{n}C_{1}$, $5 \cdot {}^{n}C_{2}$, $7 \cdot {}^{n}C_{3}$,..... is equal to $2^{100} \cdot 100$, then $2 \left| \frac{n-1}{2} \right|$ is equal to _____.
- If the co-efficients of x^7 and x^8 in the expansion of $\left(2+\frac{x}{3}\right)^{11}$ are equal, then the value of n is 30. equal

- If the coefficient of x^7 in $\left(x^2 + \frac{1}{bx}\right)^{11}$ and x^{-7} in $\left(x \frac{1}{bx^2}\right)^{11}$, $b \ne 0$, are equal, then the value of 31. b is equal to:
 - (A)
- (B)
- (C)
- (D)
- 32. A possible value of 'x', for which the ninth term in the expansion of

1

$$\left\{ 3^{\log_3 \sqrt{25^{X-1}+7}} + 3^{\left(-\frac{1}{8}\right)\log_3(5^{X-1}+1)} \right\}^{10} \text{ in the increasing powers of } 3^{\left(-\frac{1}{8}\right)\log_3(5^{X-1}+1)} \text{ is equal}$$

- to 180, is:

- $\sum_{k=0}^{20} (^{20}C_k)^2$ is equal to:

- $^{40}C_{21}$ (B) $^{40}C_{20}$ (C) $^{41}C_{20}$ (D) $^{40}C_{19}$
- Let $\binom{n}{k}$ denote nC_k and $\binom{n}{k} = \left\{ \begin{pmatrix} n \\ k \end{pmatrix}, & \text{if } 0 \le k \le n \\ 0, & \text{otherwise} \right\}$. If $A_k = \sum_{i=0}^9 \binom{9}{i} \binom{12}{12-k+i} + \sum_{i=0}^8 \binom{8}{i} \binom{13}{13-k+i}$ and $A_4 - A_3 = 190p$, then p is equal to ____
- If the sum of the coefficients in the expansion of $(x + y)^n$ is 4096, then the greatest coefficient in 35. the expansion is:
- If $\left(\frac{3^6}{4^4}\right)k$ is the term, independent of x, in the binomial expansion of $\left(\frac{x}{4} \frac{12}{x^2}\right)^{12}$, then k is equal 36.
- $3 \times 7^{22} + 2 \times 10^{22} 44$ when divided by 18 leaves the remainder _____ 37.

Binomial Theorem Class - XI | Mathematics

JEE Main 2022

- Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial 1. expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^{1/2}$, in the increasing powers of $\frac{1}{\sqrt[4]{3}}$ be $\sqrt[4]{6}:1$. If the sixth term from the beginning is $\frac{\alpha}{4\sqrt{3}}$, then α is equal to_____.
- The remainder when 3^{2022} is divided by 5 is: 2.
 - (A)
- (B)
- (C) 3
- (D)

The coefficient of x^{101} in the expression. 3.

$$(5+x)^{500} + x(5+x)^{499} + x^2(5+x)^{498} + \dots + x^{500}, x > 0$$
, is:

- ${}^{501}C_{101}(5)^{399}$ (B) ${}^{501}C_{101}(5)^{400}$ (C) ${}^{501}C_{100}(5)^{400}$ (D) ${}^{500}C_{101}(5)^{399}$
- 4. If the sum of the co-efficients of all the positive even powers of x in the binomial expansion of $\left(2x^3 + \frac{3}{x}\right)^{10}$ is $5^{10} - \beta \cdot 3^9$, then β is equal to _____.
- If $\frac{1}{2.3^{10}} + \frac{1}{2^2.3^9} + \dots + \frac{1}{2^{10}.3} = \frac{K}{2^{10}.3^{10}}$, then the remainder when K is divided by 6 is: 5.
 - **(A)** 1 **(B)** 2
- (C)
- Let C_r denote the binomial coefficient of x^r in the expansion of $(1+x)^{10}$. If for $\alpha, \beta \in R$ 6. $C_1 + 3 \cdot 2C_2 + 5 \cdot 3C_3 + \dots$ upto 10 terms $= \frac{\alpha \times 2^{11}}{2^{\beta} - 1} \left(C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots \right)$ then value of $\alpha+\beta$ is equal to _____.
- For a natural number n, let $\alpha_n = 19^n 12^n$. Then, the value of $\frac{31\alpha_9 \alpha_{10}}{57\alpha_9}$ is _____. 7.

8. If
$$A = \sum_{n=1}^{\infty} \frac{1}{\left(3 + (-1)^n\right)^n}$$
 and $B = \sum_{n=1}^{\infty} \frac{(-1)^n}{\left(3 + (-1)^n\right)^n}$, then $\frac{A}{B}$ is equal to:

- (A) $\frac{11}{9}$ (B) 1 (C) $-\frac{11}{9}$

If $\binom{40}{60} + \binom{41}{60} + \binom{42}{60} + \binom{42}{60} + \dots + \binom{60}{60} + \binom{60}{60} = \frac{m}{n} \binom{60}{60} = \frac{m}{$ 9.

- The remainder when $(2021)^{2023}$ is divided by 7 is: 10.

11. If the sum of the coefficients of all the position powers of x, in the Binomial expansion of $\left(x^{n} + \frac{2}{....}\right)^{n}$ is 939, then the sum of all the possible values of *n* is ______

- Let x be a random variable having binomial distribution B(7,p). If P(X=3)=5P(X=4), then 12. the sum of the mean and the variance of X is:
 - (A)
- $\frac{7}{16}$ (C) $\frac{77}{36}$
- (D) $\frac{49}{16}$

If the coefficient of x^{10} in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{1/4}} + \frac{\sqrt{5}}{x^{1/3}}\right)^{60}$ is $5^k I$, where $I, k \in \mathbb{N}$ and 13. t is co-prime, to 5, then k is equal to_

- The term independent of x in the expansion of $\left(1-x^2+3x^3\right)\left(\frac{5}{2}x^3-\frac{1}{5x^2}\right)^{1/2}$, $x \ne 0$ is: 14.
- (B) $\frac{33}{200}$ (C) $\frac{39}{200}$

If $\sum_{k=1}^{31} {31 \choose k} {31 \choose k-1} - \sum_{k=3}^{30} {30 \choose k} {30 \choose k-1} = \frac{\alpha(60!)}{(30!)(31!)}$. where $\alpha \in R$, then the value of 16α is 15. equal to:

- (A) 1411
- (B) 1320
- (C) 1615
- (D) 1855
- 16. The number of positive integers k such that the constant term in the binomial expansion of $\left(2x^3 + \frac{3}{\sqrt{k}}\right)^{12}$, $x \neq 0$ is $2^8 \cdot \ell$ where ℓ is an odd integer is _____.
- Let $n \ge 5$ be an integer. If $9^n 8n 1 = 64\alpha$ and $6^n 5n 1 = 25\beta$, then $\alpha \beta$ is equal to: 17.
 - $1 + {}^{n}C_{2}(8-5) + {}^{n}C_{3}(8^{2}-5^{2}) + ... + {}^{n}C_{n}(8^{n-1}-5^{n-1})$
 - $1 + {}^{n}C_{2}(8-5) + {}^{n}C_{4}(8^{2}-5^{2}) + ... + {}^{n}C_{n}(8^{n-2}-5^{n-2})$
 - (C) ${}^{n}C_{3}(8-5) + {}^{n}C_{4}(8^{2}-5^{2}) + ... + {}^{n}C_{n}(8^{n-2}-5^{n-2})$
 - ${}^{n}C_{4}(8-5) + {}^{n}C_{5}(8^{2}-5^{2}) + ... + {}^{n}C_{5}(8^{n-3}-5^{n-3})$

- 18. Let the coefficients of x^{-1} and x^{-3} in the expansion of $\left(2x^{1/5} \frac{1}{x^{1/5}}\right)^{15}$, x > 0, be m and n respectively. If r is a positive integer such that $mn^2 = {}^{15}C_r \cdot 2^r$, then the value of r is equal to
- 19. If the constant term in the expansion of $\left(3x^3 2x^2 + \frac{5}{x^5}\right)^{10}$ is $2^k.I$, where I is an odd integer, then the value of k is equal to:
 - **(A)** 6
- **(B)** 7
- (C) E
- (D)
- **20.** The remainder when $(11)^{1011} + (1011)^{11}$ is divided by 9 is:
 - **(A)** 1
- **(B)** 4
- (C) 6
- **(D)** 8
- **21.** The remainder when $(2021)^{2022} + (2022)^{2021}$ is divided by 7 is:
 - **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 6

- 22. The remainder when $7^{2022} + 3^{2022}$ is divided by 5 is:
 - **(A)** 0
- **(B)** 2
- **(C)** 3
- **(D)** 4
- 23. If the maximum value of the term independent of t in the expansion of $\left(t^2 x^{1/5} + \frac{(1-x)^{1/10}}{t}\right)^{15}, x \ge 0, \text{ is } K, \text{ then } 8K \text{ is equal to } \underline{\hspace{1cm}}.$
- 24. Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}} + \beta x\right)^4$, $(1 3\beta x)^2$ and $\left(1 \frac{\beta}{2}x\right)^6$, $\beta > 0$, respectively from the first three terms of an A.P. If d is the common difference of this A.P., then $50 \frac{2d}{\beta^2}$ is equal to ______.
- 25. If $1 + (2 + {}^{49}C_1 + {}^{49}C_2 + \dots + {}^{49}C_{49})({}^{50}C_2 + {}^{50}C_4 + \dots + {}^{50}C_{50})$ is equal to $2^n \cdot m$, where m is odd, then n + m is equal to _____.
- **26.** $\sum_{r=1}^{20} (r^2 + 1)(r!)$ is equal to:
 - **(A)** 22! 2°
- 22! 21! **(B)** 22! 2 (21!)
- (C)
- 21! 2 (20!)
- **(D)** 21! 20!
- 27. If $\sum_{k=1}^{10} K^2 (10_{C_K})^2 = 22000L$, then L is equal to _____.

28.
$$\sum_{i, j=0}^{n} {^{n}C_{i}}^{n}C_{j} \text{ is equal to } i \neq j.$$

(A)
$$2^{2n} - {}^{2n} C_n$$

(B)
$$2^{2n-1} - {}^{2n-1}C_{n-1}$$

(C)
$$2^{2n} - \frac{1}{2} {}^{2n}C_n$$

(D)
$$2^{n-1} + 2^{n-1}C_n$$

- 29. Let for the 9th term in the binomial expansion of $(3+6x)^n$, in the increasing powers of 6x, to be the greatest for $x = \frac{3}{2}$, the least value of n is n_0 . If k is the ratio of the coefficient of x^6 to the coefficient of x^3 , then $k+n_0$ is equal to:
- **30.** If the coefficients of x and x^2 in the expansion of $(1+x)^p (1-x)^q$, $p,q \le 15$, are -3 and -5 respectively, then the coefficient of x^3 is equal to _____.

Stra	ignt Li	ine				Ul	ass - x	i iviatnema		
JEE N	lain 20)21								
1.	A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of									
	this lin	ne on the coordin	ate axes	is $\frac{1}{4}$. Three sto	nes A, B	and C ae place	d at the p	points (1, 1), (2, 2)		
	and (4,	, 4) respectively.	Then wh	nich of these ston	ies is/ar	e on the path of	the man	1?		
2.	(A) The im	All the three	(B)	A only the line $x - y + 1$	(C) - 0 lies	C only	(D)	B only		
2.		$(x-4)^2 + (y+2)^2$		the line $\chi - y + 1$		$(x-2)^2+(y-4)^2$	$)^2 = 4$			
		$(x-2)^2 + (y-2)^2$				$(x-4)^2 + (y-4)^2$				
3.	• •	. , , , ,		x - y = 0, x + 2y =			,			
	(A)	Equilateral tria		, y 0, x 1 2 y	(B)	Right angled tr	iangle			
	(C)	Isosceles triang	-		(D)	None of the ab	_			
4.				aight lines which	• •			3) and makes an		
	angle $\tan^{-1}(\sqrt{2})$ with the straight line, $y+1=3\sqrt{2}x$ is:									
	(A)	$5\sqrt{2}x + 4y - (15 + 4\sqrt{2}) = 0$				$4\sqrt{2}x - 5y - (5$	+ 4√2) =	0		
	(C)	$4\sqrt{2}x + 5y - (15)$	$5 + 4\sqrt{2}$)	= 0	(D)	$4\sqrt{2}x + 5y - 4\sqrt{2}$	$\sqrt{2} = 0$			
5.						oscissa of poin	t of inte	ersection of lines		
				Iso an integer, is			(D)	0		
_	(A)	3	(B)	1	(C)	O A line w may m	(D)	2		
6.						•		tersects lines AC ABC and ΔPQC		
				, then the value						
	(A)	1	(B)	2	(C)	3	(D)	<u>4</u> 15		
7.		on of the perpend						respectively. If the		
	(A)	(0, 2)	(B)	(-2, -2)	(C)	(1, 4)	(D)	(–1, 0)		

									_
8.	equila	iteral triangle	be along t	he straight	line $x + y = 3$. If Rand	gin. Let one o		
	and ir	ncircle respec	tively of <i>∆A</i>	BC, then (F	(r+r) is equal t	:0:			
	(A)	7√2	(B)	2√2	(C)	$\frac{9}{\sqrt{2}}$	(D)	3√2	
9.	Let ta	anα, tanβ and	d tan γ; α, β,	$\gamma \neq \frac{(2n-1)\pi}{2}$	$n \in \mathbb{N}$ be the	he slopes	of three line	segments	OA, OB
	and C	DC, respective	ely, where () is origin.	If circumcent	re of ∆AE	3C coincides v	vith origin	and its
	orthod	centre lies on	y-axis, ther	n the value o	of $\left(\frac{\cos 3\alpha + \cos \alpha}{\cos \alpha}\right)$	os 3β + cos os β cos γ	$\left(\frac{3\gamma}{2}\right)^2$ is equal	to	
10.	Consi	der a triangle	having ver	tices A(-2,	3), <i>B</i> (1, 9) ar	nd C(3, 8).	. If a line <i>L</i> pa	ssing throu	ugh the
	circur	m-center of tr	riangle <i>ABC</i>	, bisects lin	e <i>BC</i> , and in	tersects y	y-axis at point	$\left(0,\frac{\alpha}{2}\right)$, th	nen the
	value	value of real number α is							
11.	Let th	e equation of	the pair of	lines, $y = px$	x and $y = qx$, can be v	vritten as (y - µ	ox)(y – qx) =	= 0 .
	Then	the equation	of the pair o	of the angle l	bisectors of th	ne lines x	$^2 - 4xy - 5y^2 =$	0 is:	
	(A)	$x^2 + 3xy -$	$y^2 = 0$		(B)	$x^2 - 3xy$	$y - y^2 = 0$		
	(C)	$x^2 + 4xy -$	$y^2 = 0$		(D)	$x^2 - 3xy$	$y + y^2 = 0$		
12.	The point P (a, b) undergoes the following three transformations successively :								
	(a) Reflection about the line y=x(b) Translation through 2 units along the positive direction of x-axis								
	(b)		_	_					
	(c)			-			lockwise direct		
	If the	co-ordinates	of the final	position of	the point P ar	$-e\left(-\frac{1}{\sqrt{2}},\right)$	$\left(\frac{7}{\sqrt{2}}\right)$, then th	e value of	2a + b is
	equal	to:							
12	(A)	· ·	• •		(C)		• •	1	a of one
13.							7 <i>x</i> +2 <i>y</i> =0. If tl ier diagonal pa		
	point	-	і ше раган	elogi airi 15	11x + 7y = 9	then our	iei uiagoriai pa	35565 111100	agii tile
	(A)	(1, 2)	(B)	(2, 2)	(C)	(2, 1)	(D)	(1, 3)	
14.							И be the mid-р		and the
	perpe	ndicular bise	ctor of AB m	neets the <i>y-a</i>	ixis at <i>C</i> . The	locus of t	he mid-point <i>P</i>	of MC is:	
	(A)	$2x^2 + 3y -$	9 = 0		(B)	$3x^2 - 2y$	y - 6 = 0		
	(C)	$3x^2 + 2y -$	6 = 0		(D)	$2x^2 - 3y$	y + 9 = 0		

Let ABC be a triangle with A (-3,1) and $\angle ACB = \theta$, $0 < \theta < \frac{\pi}{2}$ If the equation of the median 15. through B is 2x + y - 3 = 0 and the equation of angle bisector of C is 7x - 4y - 1 = 0, then $\tan \theta$ is equal to:

(B) $\frac{1}{2}$ (C) $\frac{4}{3}$

16. Let the points of intersections of the lines x-y+1=0, x-2y+3=0 and 2x-5y+11=0 are the mid points of the sides of a triangle ABC. Then the area of the triangle ABC is:

17. A man starts walking from the point P(-3, 4), touches the x-axis at R, and then turns to reach at the point Q(0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50((PR)^2 + (RO)^2)$ is equal to:

If p and q are the lengths of the perpendiculars from the origin on the lines, 18. $x\cos ec\alpha - y\sec \alpha = k\cot 2\alpha$ and $x\sin \alpha + y\cos \alpha = k\sin 2\alpha$ respectively, then k^2 is equal to:

(A)

 $p^2 + 2q^2$ (B) $2p^2 + q^2$ (C) $4p^2 + q^2$ (D) $p^2 + 4q^2$

Let A(a, 0), B(b, 2b+1) and C(0, b), $b \ne 0$, $|b| \ne 1$, be points such that the area of triangle ABC is 19. 1 sq. unit, then the sum of all possible values of a is :

(B) $\frac{2b^2}{b+1}$ (C) $\frac{-2b^2}{b+1}$ (D) $\frac{2b}{b+1}$

JEE Advanced 2021

1. Consider a triangle Δ whose two sides lie on the x-axis and the line x+y+1=0. If the orthocenter of Δ is (1, 1), then the equation of the circle passing through the vertices of the triangle *∆* is:

(A) $x^2 + y^2 - 3x + y = 0$ **(B)** $x^2 + y^2 + x + 3y = 0$

 $x^2 + y^2 + 2y - 1 = 0$

(D) $x^2 + y^2 + x + y = 0$

Question Stem for Question Nos. 2 and 3

Question Stem

Consider the lines L_1 and L_2 defined by

$$L_1: x\sqrt{2} + y - 1 = 0$$
 and $L_2: x\sqrt{2} - y + 1 = 0$

For a fixed constant λ , let C be the locus of a point P such that the product of the distance of P from L_1 and the distance of P from L_2 is λ^2 . The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $\sqrt{270}$.

Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'

The value of λ^2 is . 2.

3. The value of *D* is _____.

Str	aight Line					Class - X	KI Mathei	matics			
JEE I	Main 2022										
1.	Let the area of t	he triangle wit	th vertices A(1, α), Β(α, 0	D) and <i>C</i> ((D, α) be 4 sq.	units. If the po	ints			
	$(\alpha, -\alpha), (-\alpha, \alpha)$ as	nd (α^2, β) are	collinear, ther	nβ is equ	al to:						
	(A) 64	(B)	-8	(C)	-64	(D)	512				
2.	Let I_1 be the lin	e in <i>xy</i> -plane	with x and y	' intercep	ts $\frac{1}{8}$ and	$\frac{1}{4\sqrt{2}}$ respective	vely, and I_2 be	the			
	line in zx – plar	ne with <i>x</i> and	z intercepts	$-\frac{1}{8}$ and	$-\frac{1}{6\sqrt{3}} r$	espectively. If	d is the shor	test			
	distance betweer	n the line l_1 ai	nd I_2 , then d	^{−2} is equa	al to	·					
3.		In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is $2x + y = 4$.									
	Let the point B	lie on the line	x + 3y = 7.	If (α, β) is	s the cent	roid of <i>∆ABC</i> ,	then $15(\alpha + \beta)$) is			
	equal to:										
	(A) 39	(B)	41	(C)	51	(D)	63				
4.	Let a triangle be	bounded by th	ne liens $L_1:2x$	x + 5y = 10	$L_2 : -4x$	+3y = 12 and	the line L_3 , wh	nich			
	passes through t	passes through the point $P(2,3)$, intersects L_2 at A and L_1 at B. If the point P divides the line-									
	segment <i>AB</i> , int	ternally in the	ratio 1:3, the	n the area	of the tria	angle is equal t	:0:				
	(A) $\frac{110}{13}$	(B)	132 13	(C)	142 13	(D)	151 13				
5.	A ray of light page	ssing through	the point P(2	, 3) reflect	s on the <i>x</i>	-axis at point	A and the reflec	cted			
	ray passes thro	ugh the point	Q(5, 4). Let	R be the	point the	at divides the	line segment	AQ			
	internally into th	ne ratio 2:1. Le	et the co-ordin	nates of th	ne foot of t	he perpendicu	lar M from R	on			
	the bisector of th	ne angle PAQ b	$pe(\alpha, \beta)$. Then	, the value	e of $7\alpha + 3$	β is equal to _	·				
6.	The distance of	the origin fron	n the centroid	of the tr	iangle who	ose two sides I	nave the equati	ons			
	x - 2y + 1 = 0 and	d $2x - y - 1 = 0$	and whose o	rthocentei	r is $\left(\frac{7}{3}, \frac{7}{3}\right)$	is:					
	(A) $\sqrt{2}$	(B)	2	(C)	$2\sqrt{2}$	(D)	4				

The distance between the two points A and A' which lie on y = 2 such that both the line segments

	AB and A' B (where B is the point (2, 3)) subtend angle $\frac{\pi}{4}$ at the origin, is equal to:								
	(A)	10	(B)	48 5	(C)	<u>52</u> 5	(D)	3	
8.	Let the	point $P(\alpha, \beta)$ b	e at a u	nit distance fro	m each	of the two lines	$L_1 : 3x$	-4y + 12 = 0, and	
	L ₂ : 8x	+6y+11=0. If	P lies be	low L ₁ and abov	re L ₂ , th	en 100 ($\alpha + \beta$) is	equal to	0:	
	(A)	-14	(B)	42	(C)	-22	(D)	14	
9.					_			ntersects the line	
	x-y-2	2=0 at the poir	nt <i>B</i> . If th	ne length of the	line segr	ment AB is $\frac{\sqrt{29}}{3}$, then I	B also lies on the	
	line:								
	(A)	2x + y = 9	(B)	3x - 2y = 7	(C)	x + 2y = 6	(D)	2x - 3y = 3	
10.	Let m	$_{1}$, m_{2} be the	slopes	of two adjacer	nt sides	of a square	of sid	e a such that	
	a ² +11	$a+3(m_1^2+m_2^2)=$	= 220 . If	one vertex of t	he squa	re is $(10(\cos\alpha -$	- $\sin \alpha$),1	$O(\sin\alpha + \cos\alpha)$,	
	where $\alpha \in \left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal is $\left(\cos \alpha - \sin \alpha\right)x + \left(\sin \alpha + \cos \alpha\right)y = 10$, then								
	72(sin	$(4 \alpha + \cos^4 \alpha) + a^2$	- 3a +13	3 is equal to:					
	(A)	119	(B)	128	(C)	145	(D)	155	
11.	Let A($(\alpha, -2), B(\alpha, 6)$ an	d $C\left(\frac{\alpha}{4}, -\frac{\alpha}{4}\right)$	be vertices o	of a ∆AB	C . If $\left(5, \frac{\alpha}{4}\right)$ is the	ne circur	mcentre of ΔABC	
	, then v	which of the follo	wing is N	IOT correct abou	ut ∆ <i>ABC</i>	?			
	(A)	area is 24			(B)	perimeter is 25			
	(C)	circumradius is	5 5		(D)	inradius is 2			
12.						B(b,5) and $C(a,b)or k_1 + k_2 is equal$		be P(1,1). If the	
	(A)	2	(B)	4 7	(C)	$\frac{2}{7}$	(D)	4	
13.	The eq	uations of the s	sides AB	, BC and CA o	f a triar	ngle <i>ABC</i> are 2	x + y = 0	x + py = 39 and	
	<i>x</i> – <i>y</i> =	3 respectively a	nd $P(2,3)$	B) is its circumo	entre. Th	nen which of the	followin	ng is NOT true?	
	(A)	$(AC)^2 = 9p$			(B)	$\left(AC\right)^2 + p^2 = 13$	36		

(D)

 $34 < area(\Delta ABC) < 38$

 $32 < area(\Delta ABC) < 36$

(C)

7.

- 14. A point P moves so that the sum of squares of its distances from the points (1, 2) and (-2, 1) is 14. Let f(x,y) = 0 be the locus of P, which intersects the x-axis at the points A, B and the y-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to:
 - (A) $\frac{9}{2}$
- **(B)** $\frac{3\sqrt{12}}{2}$
- $\frac{3\sqrt{17}}{2}$ (c) $\frac{3\sqrt{17}}{4}$
- (D) ⁽
- 15. The equations of the sides *AB*, *BC* and *CA* of a triangle *ABC* are 2x + y = 0, x + py = 15a and x y = 3 respectively. If its orthocentre is (2, a), $-\frac{1}{2} < a < 2$, then *p* is equal to ______.

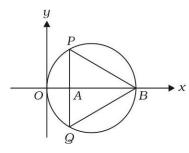
Circle Class - XI | Mathematics

JEE Main 2021

1. If one of the diameters of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is chord of another circle 'C', whose centre is at (2, 1), then its radius is _____.

Let a point P be such that its distance from the point (5, 0) is thrice the distance of P from the point (-5, 0). If the locus of the point P is a circle of radius r, then $4r^2$ is equal to ______.

3. In the circle below, let OA = 1 unit, OB = 13 unit and $PQ \perp OB$. Then, the area of the triangle PQB (in square units) is :



- **(A)** $24\sqrt{3}$
- **(B)** $26\sqrt{3}$
- (C) $26\sqrt{2}$
- **(D)** $24\sqrt{2}$

4. If the locus of the mid-point of the line segment from the point (3, 2) to a point on the circle, $x^2 + y^2 = 1$ is a circle of radius r, then r is equal to:

- (A)
- **(B)** $\frac{1}{2}$
- (C) $\frac{1}{3}$
- (D) -

5. Let the normal at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3, -3) and $(4, -2\sqrt{2})$, and given that $a - 2\sqrt{2}b = 3$, then $(a^2 + b^2 + ab)$ is equal to ______.

6. If the area of the triangle formed by the positive x-axis, the normal and the tangent to then circle $(x-2)^2 + (y-3)^2 = 25$ at the point (5, 7) is A, then 24A is equal to ______.

7.	For the four circles M, N, O and P, following four equations are given:										
	Circle M: $x^2 + y^2 = 1$										
	Circle N : $x^2 + y^2 - 2x = 0$										
	Circle O: $x^2 + y^2 - 2x - 2y + 1 = 0$										
	Circle P: $x^2 + y^2 - 2y = 0$										
	with o	centre of the ci	rcle O, cer	ned with centre atre of circle O of circle M, the Rectangle	is joined v	with the centr	e of circle F		centre		
8.		•		about two circle				•			
	-	$y^2 - 10x - 10y + $ $y^2 - 22x - 10y - $									
	(A) (C)	circles have	•	neeting point re	(B) (D)	circles have		• .			
9.	Let the lengths of intercepts on x-axis and y-axis made by the circle $x^2 + y^2 + ax + 2ay + c = 0$,										
		$(a < 0)$ be $2\sqrt{2}$ and $2\sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x + 2y = 0$, is equal to:									
	(A)	$\sqrt{6}$	(B)	$\sqrt{7}$	(C)	$\sqrt{10}$	(D)	√11			
10.	The n	The minimum distance between any two points P_1 and P_2 while considering point P_1 on one									
	circle	circle and point P_2 on the other circle for the given circles' equations									
	$x^2 + y^2 - 10x - 10y + 41 = 0$										
	$x^2 + y$	$x^2 + y^2 - 24x - 10y + 160 = 0$ is									
11.	The li	The line $2x - y + 1 = 0$ is a tangent to the circle at the point (2, 5) and the centre of the circle lies									
	on x	-2y = 4 . The	n, the radi	us of the circle	is:						
	(A)	$5\sqrt{4}$	(B)	$3\sqrt{5}$	(C)	5√3	(D)	4√5			
12.	Choos	se the incorrect	t statemen	t about the two	circles w	hose equation	ns are given	below:			
	$x^2 + y$	$y^2 - 10x - 10y$	+ 41 = 0 ar	and $x^2 + y^2 - 16$	x – 10y +	80 = 0					
	(A)			centres is the a	verage of	radii of both	the circles.				
	(B)			section points	f one and	thor					
	(C) (D)			inside region o ugh the centre							
13.			•	$(-2)^2 + y^2 = 1.$			er of a varia	able circle S	which		
			_	xternally alway:							
			_					$\begin{pmatrix} 2 & 3 \end{pmatrix}$			
	(A)	$\left(0,\pm\sqrt{3}\right)$	(B)	$(1, \pm 2)$	(C)	$\left(\frac{1}{2},\pm\frac{\sqrt{5}}{2}\right)$	(D)	$\begin{pmatrix} 2, \pm \frac{1}{2} \end{pmatrix}$			

14.	Let $ABCD$ be a square of side of unit length. Let a circle C_1 centered at A with unit radius is
	drawn. Another circle C_2 which touches C_1 and the lines AD and AB are tangent to it, is also
	drawn. Let a tangent line from the point \mathcal{C} to the circle \mathcal{C}_2 meet the side AB at E . If the length
	of <i>EB</i> is $\alpha + \sqrt{3} \beta$, where α, β are integers, then $\alpha + \beta$ is equal to

- 15. Let the tangent to the circle $x^2 + y^2 = 25$ at the point R(3, 4) meet x-axis and y-axis at points P and Q, respectively. If r is the radius of the circle passing through the origin Q and having centre at the incentre of the triangle QPQ, then r^2 is equal to:
 - (A) $\frac{529}{64}$ (B) $\frac{625}{72}$ (C) $\frac{125}{72}$ (D) $\frac{58}{66}$
- Two tangents are drawn from a point P to the circle $x^2 + y^2 2x 4y + 4 = 0$, such that the angle between these tangent is $\tan^{-1}\left(\frac{12}{5}\right)$, where $\tan^{-1}\left(\frac{12}{5}\right) \in (0, \pi)$. If the centre of the circle is denotes by C and these tangents touch the circle at points A and B, then the ratio of the areas of ΔPAB and ΔCAB is:
- (A) 11:4 (B) 2:1 (C) 3:1 (D) 9:4

 17. Let r_1 and r_2 be the radii of the largest and smallest circles, respectively, which pass through the point (-4, 1) and having their centres on the circumference of the circle $x^2 + y^2 + 2x + 4y 4 = 0$.

 If $\frac{r_1}{r_2} = a + b\sqrt{2}$, then a + b is equal to:
 - **(A)** 11 **(B)** 5 **(C)** 3 **(D)** 7
- 18. Let the circle $S: 36x^2 + 36y^2 108x + 120y + C = 0$ be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, x 2y = 4 and 2x y = 5 lies inside the circle S, then:
 - (A) 100 < C < 165 (B) $\frac{25}{9} < C < \frac{13}{3}$ (C) 100 < C < 156 (D) 81 < C < 156
- 19. The equation of a circle is $Re(z^2) + 2(Im(z))^2 + 2Re(z) = 0$, where z = x + iy. A line which passes through the centre of the given circle and the vertex of the parabola, $x^2 6x y + 13 = 0$, has y intercept equal to _____.
- **20.** Let $A = \{(x, y) \in R \times R \mid 2x^2 + 2y^2 2x 2y = 1\}$, $B = \{(x, y) \in R \times R \mid 4x^2 + 4y^2 16y + 7 = 0\}$ and $C = \{(x, y) \in R \times R \mid x^2 + y^2 4x 2y + 5 \le r^2\}$.

Then the minimum value of |r| such that $A \cup B \subseteq C$ is equal to :

- (A) $\frac{3+2\sqrt{5}}{2}$ (B) $1+\sqrt{5}$ (C) $\frac{3+\sqrt{10}}{2}$ (D) $\frac{2+\sqrt{10}}{2}$
- **21.** Two tangents are drawn from the point P(-1, 1) to the circle $x^2 + y^2 2x 6y + 6 = 0$. If these tangents touch the circle at points A and B, and if D is a point on the circle such that length of the segments AB and AD are equal, then the area of triangle ABD is equal to :
 - (A) 2 (B) 4 (C) $(3\sqrt{2}+2)$ (D) $3(\sqrt{2}-1)$

22.	through origin O . If OC is perpendicular to both the line segments CP and CQ , then the set $\{P, Q\}$								
		al to :				Ü			
	(A)	{(-1, 5), (5, 1)}		(B)	$\left\{ (2+2\sqrt{2},\right.$	$3 + \sqrt{5}$), (2 –	$2\sqrt{2}$, $3-\sqrt{5}$)	}
	(C)	{(4, 0), (0, 6))}		(D)	$\left\{ (2+2\sqrt{2},\right.$	$3 - \sqrt{5}$), (2 –	$2\sqrt{2}$, $3+\sqrt{5}$)	}
23.		der a circle C v				nd cuts off a	an intercept	$6\sqrt{5}$ on the	x-axis.
	(A)	8	(B)	√82	(C)	√53	(D)	9	
24.	Let th	ne equation x^2	$x^2 + y^2 + px$	+(1-p)y+5	=0 represen	t circles of	varying radi	us $r \in (0, 5]$.	Then
	the nu	the number of elements in the set $S = \{q : q = p^2 \text{ and } q \text{ is an integer} \}$ is							
25.	A cir	cle C touch	es the I	ne $x = 2y$	at the po	oint (2, 1) and inte	rsects the	circle
		$x^2 + y^2 + 2y - 5$ eter of <i>C</i> is:	= 0 at two	points P	and Q such	that PQ is	a diameter	of C_1 . The	en the
	(A)	15	(B)	7√5	(C)	4√15	(D)	$\sqrt{285}$	
26.	The locus of a point, which moves such that the sum of squares of its distances from the points								
	(0, 0),	(1, 0), (0, 1) (1, 1) is 18 uni	s, is a circle	of diameter	d . Then d^2	is equal to	·	
27.	If a line along a chord of the circle $4x^2 + 4y^2 + 120x + 675 = 0$, passes through the point								
	(-30,	0) and is tang	ent to the	parabola y ²	=30x, then t	the length o	f this chord	is:	
	(A)	5	(B)	7	(C)	3√5	(D)	5√3	
28.	If th	e variable	line 3 <i>x</i> +	$4y = \alpha$ lies	between th	ne two c	ircles (x – ´	$(1)^2 + (y-1)^2 =$	= 1 and
		$(y-1)^2 + (y-1)^2 = 4$ s of α is		ntercepting a	a chord on eit	ther circle, t	then the sun	n of all the ir	ntegral
29.	Two c	ircles each of on tangents i	radius 5 (
		B) $(\gamma + \delta)$ is equ			₂₁ (α, ρ) and	$C_2(\gamma,0)$, C	$1 + C_2$ are t	illeli Ceriti es	, trieri
30.	•	be the set of al			$7 \times 7 \cdot (y = 2)$	$(2 + \sqrt{2} < 4)$			
50.							-)		
	$B = \{($	$(x, y) \in Z \times Z : X$	$x^2 + y^2 \le 4$	and $C = \{($	$(x, y) \in Z \times Z$:	$(x-2)^2 + (y$	$-2)^2 \le 4$. If	the total nu	ımber
	of rela	ations from A	B to A	C is 2^p , th	nen the value	of <i>p</i> is :			
	(A)	16	(B)	25	(C)	49	(D)	9	

JEE Advanced 2021

Paragraph

Let $M = \{(x, y) \in \mathbb{R} \times \mathbb{R}; x^2 + y^2 \le r^2\}$,

where r > 0. Consider the geometric progression $a_n = \frac{1}{2^{n-1}}$, $n = 1, 2, 3, \ldots$. Let $S_0 = 0$ and , for $n \ge 1$, let S_n denote the sum of the first n terms of this progression. For $n \ge 1$, let C_n denote the circle with center $(S_{n-1}, 0)$ and radius a_n , and D_n denote the circle with center (S_{n-1}, S_{n-1}) and radius a_n .

- 1. Consider M with $r = \frac{1025}{513}$. Let k be the number of all those circles C_n that are inside M. Let I be the maximum possible number of circles among these k circles such that no two circles intersect. Then
 - **(A)** k + 2l = 22
- (B)
- 2k + 1 = 26
- (C) 2k + 3l = 34

200

- **(D)** 3k + 2l = 40
- 2. Consider M with $r = \frac{(2^{100} 1)\sqrt{2}}{2^{198}}$. The number of all those circles D_n that are inside M is :
 - **(A)** 198
- **(B)** 199
- (C)

(D) 201

Circle **Class - XI | Mathematics**

JEE Main 2022

Let a circle $C: (x-h)^2 + (y-k)^2 = r^2$, k > 0, touch the x-axis at (1, 0). If the line x + y = 01. intersects the circle C at P and Q such that the length of the chord PQ is 2, then the value of h+k+r is equal to ____.

2. A circle touches both the y-axis and the line x + y = 0. Then the locus of its center is:

(A)
$$y = \sqrt{2}x$$

(B)

 $x = \sqrt{2}y$ (C) $y^2 - x^2 = 2xy$ (D) $x^2 - y^2 = 2xy$

Let a circle C touch the lines $L_1:4x-3y+K_1=0$ and $L_2:4x-3y+K_2=0$, $K_1,K_2\in R$. If a line 3. passing through the centre of the circle C intersects L_1 at (-1,2) and L_2 at (3,-6), then the equation of the circle C is:

(A)
$$(x-1)^2 + (y-2)^2 = 4$$

(B) $(x+1)^2 + (y-2)^2 = 4$

(C)
$$(x-1)^2 + (y+2)^2 = 16$$

(D) $(x-1)^2 + (y-2)^2 = 16$

Let the abscissae of the two points P and Q be the roots of $2x^2 - rx + p = 0$ and the ordinates of P 4. and Q be the roots of $x^2 - sx - q = 0$. If the equation of the circle described on PQ as diameter is $2(x^2+y^2)-11x-14y-22=0$, then 2r+s-2q+p is equal to _____.

Let C be a circle passing through the points A(2, -1) and B(3, 4). The line segment AB is not a 5. diameter of C. If r is the radius of C and its centre lies on the circle $(x-5)^2 + (y-1)^2 = \frac{13}{2}$, then r^2 is equal to:

(B)
$$\frac{65}{2}$$
 (C) $\frac{61}{2}$

(D) 30

The set of values of k, for which the circle C: $4x^2 + 4y^2 - 12x + 8y + k = 0$ lies inside the fourth 6. quadrant and the point $\left(1, -\frac{1}{3}\right)$ lies on or inside the circle C, is:

B)
$$\left[6, \frac{65}{9}\right]$$

an empty set **(B)**
$$\left[6, \frac{65}{9}\right]$$
 (C) $\left[\frac{80}{9}, 10\right]$ **(D)** $\left[9, \frac{92}{9}\right]$

(D)
$$\left[9, \frac{92}{9} \right]$$

- 7. Let a circle C of radius 5 lie below the x-axis. The line $L_1: 4x + 3y + 2 = 0$ passes through the centre P of the circle C and intersects line $L_2: 3x - 4y - 11 = 0$ at Q. The line L_2 touches C at the point Q. Then the distance of P from the line 5x - 12y + 51 = 0 is _____.
- 8. A rectangle R with end points of one of its sides as (1,2) and (3,6) is inscribed in a circle. If the equation of diameter of the circle is 2x - y + 4 = 0, then the area of R is _____.
- If one the diameters of the circle $x^2 + y^2 2\sqrt{2}x 6\sqrt{2}y + 14 = 0$ is a chord of the circle 9. $(x-2\sqrt{2})^2+(y-2\sqrt{2})^2=r^2$, then the value of r^2 is equal to ______
- If the tangents drawn at the points O(0,0) and $P\left(1+\sqrt{5},2\right)$ on the circle $x^2+y^2-2x-4y=0$ 10. intersect at the point Q, then the area of the triangle OPQ is equal to:
- (A) $\frac{3+\sqrt{5}}{2}$ (B) $\frac{4+2\sqrt{5}}{2}$ (C) $\frac{5+3\sqrt{5}}{2}$ (D) $\frac{7+3\sqrt{5}}{2}$
- Let a triangle ABC be inscribed in the circle $x^2 \sqrt{2}(x+y) + y^2 = 0$ such that $\angle BAC = \frac{\pi}{2}$. If the 11. length of side AB is $\sqrt{2}$, then the area of the $\triangle ABC$ is equal to:

- $(\sqrt{2} + \sqrt{6})/3$ (B) $(\sqrt{6} + \sqrt{3})/2$ (C) $(3 + \sqrt{3})/4$ (D) $(\sqrt{6} + 2\sqrt{3})/4$
- Let the tangent to the circle $C_1: x^2 + y^2 = 2$ at the point M(-1,1) intersect the circle 12. $C_2:(x-3)^2+(y-2)^2=5$, at two distinct points A and B. If the tangents to C_2 at the points A and B intersect at N, then the area of the triangle ANB is equal to:
 - (A)

- If the circles $x^2 + y^2 + 6x + 8y + 16 = 0$ and 13. $x^{2} + y^{2} + 2(3 - \sqrt{3})x + 2(4 - \sqrt{6})y = k + 6\sqrt{3} + 8\sqrt{6}, k > 0$, touch internally at the point $P(\alpha, \beta)$, then $(\alpha + \sqrt{3})^2 + (\beta + \sqrt{6})^2$ is equal to ______.
- If the circle $x^2 + y^2 2gx + 6y 19c = 0$, $g, c \in \mathbb{R}$ passes through the point (6, 1) and its centre lies 14. on the line x - 2cy = 8, then the length of intercept made by the circle on x-axis is:
 - $\sqrt{11}$ (A)
- (B)
- (C)
- $2\sqrt{23}$ (D)
- 15. For $t \in (0,2\pi)$, if ABC is an equilateral triangle with vertices $A(\sin t, -\cos t), B(\cos t, \sin t)$ and C(a,b) such that its orthocenter lies on a circle with centre $\left(1,\frac{1}{3}\right)$, then $\left(a^2-b^2\right)$ is equal to :
 - (A)
- (B) 8
- (C)
- (D)

16.	Let C be the centre of the circle $x^2 + y^2 - x + 2y = \frac{11}{4}$ and P be a point on the circle. A line passes
	through the point C , makes an angle of $\frac{\pi}{4}$ with the line CP and intersects the circle at the points
	Q and R. Then the area of the triangle $PQR(in unit^2)$ is:

(A)

(B)

(C) $8\sin\left(\frac{\pi}{8}\right)$ (D) $8\cos\left(\frac{\pi}{8}\right)$

Let the locus of the centre (α, β) , $\beta > 0$, of the circle which touches the circle $x^2 + (y-1)^2 = 1$ 17. externally and also touches the x-axis be L. Then the area bounded by L and the line y = 4 is:

(A)

(B)

 $\frac{40\sqrt{2}}{3}$ (C) $\frac{64}{3}$

Let the tangents at two points A and B on the circle $x^2 + y^2 - 4x + 3 = 0$ meet at origin O(0, 0). 18. Then the area of the triangle OAB is:

(A)

(B) $\frac{3\sqrt{3}}{4}$ (C) $\frac{3}{2\sqrt{3}}$ (D) $\frac{3}{4\sqrt{3}}$

Let AB be a chord of length 12 of the circle $(x-2)^2 + (y+1)^2 = \frac{169}{4}$. If tangents drawn to the 19. circle at point A and B intersect at the point P, then five times the distance of point P from chord AB is equal to ____

Let $S = \{(x, y) \in N \times N : 9(x-3)^2 + 16(y-4)^2 \le 144\}$ and 20. $T = \left\{ \left(x, y \right) \in \mathbb{R} \times \mathbb{R} : \left(x - 7 \right)^2 + \left(y - 4 \right)^2 \le 36 \right\}. \text{ Then } n \left(S \cap T \right) \text{ is equal to } \underline{\hspace{1cm}}.$

21. Let the abscissae of the two point P and Q on a circle be the roots of $x^2 - 4x - 6 = 0$ and the ordinates of P and Q be the roots of $y^2 + 2y - 7 = 0$, If PQ is a diameter of the circle $x^2 + y^2 + 2ax + 2by + c = 0$, then the value of (a+b-c) is _____

(A) 12 (B) 13

(C)

(D) 16

22. A circle C_1 passes through the origin O and has diameter 4 on the positive x-axis. The line y = 2x gives a chord OA of circle C_1 . Let C_2 be the circle with OA as a diameter. If the tangent to C_2 at the point A meets the x-axis at P and y-axis at Q, then QA:AP is equal to:

(A) 1:4 (B)

(C) 2:5

Let the mirror image of a circle $c_1: x^2 + y^2 - 2x - 6y + \alpha = 0$ in line y = x + 1 be 23. $c_2:5x^2+5y^2+10gx+10fy+38=0$. If r is the radius of circle c_2 , then $\alpha+6r^2$ is equal $c_2:5x^2+5y^2+10gx+10fy+38=0$.

Conic Sections	Class - XI Mathematics
----------------	--------------------------

JEE Main 2021

1.	The locus of the mid-point of the line segment joining the focus of the parabola $y^2 = 4ax$ to a
	moving point of the parabola, is another parabola whose directrix is:

(A) $x = -\frac{a}{2}$ **(B)** x = 0 **(C)** $x = \frac{a}{2}$ **(D)** x = a

For which of the following curves, the line
$$x + \sqrt{3}y = 2\sqrt{3}$$
 is the tangent at the point $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$?

(A)
$$y^2 = \frac{1}{6\sqrt{3}}x$$
 (B) $x^2 + 9y^2 = 9$ (C) $2x^2 - 18y^2 = 9$ (D) $x^2 + y^2 = 7$

3. If P is a point on the parabola $y = x^2 + 4$ which is closest to the straight line y = 4x - 1, then the co-ordinates of P are:

(A) (3, 13) (B) (1, 5) (C) (-2, 8) (D) (2, 8)

4. If the curves, $\frac{x^2}{a} + \frac{y^2}{b} = 1$ and $\frac{x^2}{c} + \frac{y^2}{d} = 1$ intersect each other at an angle of 90°, then which of the following relations is TRUE?

(A) $ab = \frac{c+d}{a+b}$ (B) a-b=c-d (C) a+b=c+d (D) a-c=b+d

A tangent is drawn to the parabola $y^2 = 6x$ which is perpendicular to the line 2x + y = 1. Which of the following points does NOT lie on it?

(A) (5, 4) **(B)** (-6, 0) **(C)** (4, 5) **(D)** (0, 3)

6. The locus of the point of intersection of the lines $(\sqrt{3})kx + ky - 4\sqrt{3} = 0$ and $\sqrt{3}x - y - 4(\sqrt{3})k = 0$ is a conic, whose eccentricity is _____.

A hyperbola passes through the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities is one, then the equation of the hyperbola is:

(A)
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
 (B) $\frac{x^2}{9} - \frac{y^2}{4} = 1$ (C) $x^2 - y^2 = 9$ (D) $\frac{x^2}{9} - \frac{y^2}{25} = 1$

8.				rsects the line .		at two points	P and G	, then the angle
			_			$\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{3}\right)$	(D)	$\frac{\pi}{2}$ - $\tan^{-1}\left(\frac{1}{3}\right)$
9.	points o	of contact (a, b)	and (c,	d) are distinct a	and lie ii	n the first quadr	ant, then	$x^2 = 4x$. If the two $a \ 2(a+c)$ is equal
10.	Let A(1	, 4) and $B(1, -5)$	be two	points. Let P	be a po	int on the circle	$(x-1)^2$	$+(y-1)^2 = 1$ such
	that (Pa	$(A)^2 + (PB)^2$ have	maximu	ım value, then t	he point	s, P , A and B lie	e on:	
	(A)	a straight line			(B)	an ellipse		
	(C)	a parabola			(D)	a hyperbola	0	0
11.					$4x^2 + 9$	$9y^2 = 36$ and (2)	$(x)^2 + (2y)^2$	$0^2 = 31$. Then the
		of the slope of the			0.0			
12.							nts of its	sides also lie on
				re of area of ABO				
13.						parabola $y^2 = 4$	x with r	espect to the line
	_			gent to C at P(2				
	(A)	2x + y = 5	(B)			x-y=1		
14.	If the po	oints of intersec	tion of t	he ellipse $\frac{x^2}{16} + \frac{y}{h}$	$\frac{y^2}{b^2} = 1$ as	nd the circle x^2	$+y^2=4k$	b, b > 4 lie on the
	curve y	$y^2 = 3x^2$, then b	is equal	l to:				
	(A)	10	(B)	5	(C)	6	(D)	12
15.	Let a ta	angent be drawı	n to the	ellipse $\frac{x^2}{27} + y^2$	=1at (3	$3\sqrt{3}\cos\theta$, $\sin\theta$) w	here θ ∈	$\left(0, \frac{\pi}{2}\right)$. Then the
	value of	f θsuch that the	sum of	intercepts on ax	es made	by this tangent	is minim	num is equal to:
	(A)	$\frac{\pi}{3}$		$\frac{\pi}{8}$	(C)	$\frac{\pi}{4}$	(D)	$\frac{\pi}{6}$
16.	Conside	er a hyperbola	$H: x^2 -$	$2y^2 = 4$. Let the	e tangen	t at a point <i>P</i> (4	., √6) mee	et the <i>x</i> -axis at Q
								point P, then the
		∆ <i>QFR</i> is equal t						
	(A)	$4\sqrt{6}$	(B)	$\sqrt{6}-1$	(C)	$4\sqrt{6}-1$	(D)	$\frac{7}{\sqrt{6}}$ - 2
17.	If the tl	hree normals di	rawn to	the parabola. 11	$^{2} = 2x^{-1}$	pass through th	e point ($(a, 0)$ $a \neq 0$, then
		st be greater tha		, y			- Pomic (,,,
		1		1	(0)	1	(D)	
	(A)	$-{2}$	(B)	$\frac{-}{2}$	(C)	1	(D)	-1

18. Let L be a tangent to the parabola $y^2 = 4x - 20$ at (6, 2). If L is also a tangent to the ellipse $\frac{x^2}{2} + \frac{y^2}{b} = 1$, then the value of b is equal to :

(A) 16 **(B)** 11 **(C)** 14 **(D)** 20

19. The locus of the midpoints of the chord of the circle, $x^2 + y^2 = 25$ which is tangent to the hyperbola, $\frac{x^2}{9} - \frac{y^2}{16} = 1$ is :

(A) $(x^2+y^2)^2-9x^2+16y^2=0$ (B) $(x^2+y^2)^2-9x^2+144y^2=0$

(C) $(x^2+y^2)^2-16x^2+9y^2=0$ (D) $(x^2+y^2)^2-9x^2-16y^2=0$

20. Let the tangent to the parabola S: $y^2 = 2x$ at the point P(2,2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle PQR is equal to:

(A) 25 **(B)** $\frac{15}{2}$ **(C)** $\frac{35}{2}$ **(D)** $\frac{25}{2}$

- 21. Let T be the tangent to the ellipse E: $x^2 + 4y^2 = 5$ at the point P(1,1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and $x = \sqrt{5}$ is $\alpha\sqrt{5} + \beta + \gamma\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$, then $|\alpha + \beta + \gamma|$ is equal to____.
- **22.** Let y = mx + c, m > 0 be the focal chord of $y^2 = -64x$, which is tangent to $(x+10)^2 + y^2 = 4$. Then, the value of $4\sqrt{2}(m+c)$ is equal to _____.
- **23.** Let P be a variable point on the parabola $y = 4x^2 + 1$. Then, the locus of the mid-point of the point P and the foot of the perpendicular drawn from the point P to the line y = x is:

(A) $(3x-y)^2 + 2(x-3y) + 2 = 0$ (B) $(3x-y)^2 + (x-3y) + 2 = 0$

(C) $2(x-3y)^2 + (3x-y) + 2 = 0$ (D) $2(3x-y)^2 + (x-3y) + 2 = 0$

- 24. If the point on the curve $y^2 = 6x$, nearest to the point $\left(3, \frac{3}{2}\right)$ is (α, β) , then $2(\alpha + \beta)$ is equal to ____.
- **25.** Let a line L: 2x + y = k, k > 0 be a tangent to the hyperbola $x^2 y^2 = 3$. If L is also a tangent to the parabola $y^2 = \alpha x$, then α is equal to:

(A) 24 **(B)** -24 **(C)** 12 **(D)** -12

- Let $E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b. Let E_2 be another ellipse such that it touches the end points of major 26. axis of E_1 and the foci of E_2 are the end points of minor axis of E_1 . If E_1 and E_2 have same eccentricities, then its value is:
- **(B)** $\frac{-1+\sqrt{5}}{2}$ **(C)** $\frac{-1+\sqrt{8}}{2}$ **(D)** $\frac{-1+\sqrt{6}}{2}$
- Let an ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a^2 > b^2$, passes through $\left(\sqrt{\frac{3}{2}}, 1\right)$ and has eccentricity $\frac{1}{\sqrt{3}}$. If a circle, **27.** centered at focus $F(\alpha,0), \alpha > 0$, of E and radius $\frac{2}{\sqrt{3}}$, intersects E at two points P and Q, then PQ^2 is equal to:
 - (A) $\frac{4}{3}$ **(B)** $\frac{8}{3}$ (C)
- 28. Let a parabola P be such that its vertex and focus lie on the positive x-axis at a distance 2 and 4 units from the origin, respectively. If tangents are drawn from O(0, 0) to the parabola P which meet P at S and R, then the area (in sq. units) Of $\triangle SOR$ is equal to:
 - $8\sqrt{2}$ (A) **(B)** 32 (C) **(D)**
- The locus of the centroid of the triangle formed by any point P on the hyperbola 29. $16x^2 - 9y^2 + 32x + 36y - 164 = 0$, and its foci is:
 - $9x^2 16y^2 + 36x + 32y 36 = 0$ **(B)** $16x^2 9y^2 + 32x + 36y 36 = 0$ (A)
 - **(D)** $9x^2 16y^2 + 36x + 32y 144 = 0$ $16x^2 - 9y^2 + 32x + 36y - 144 = 0$
- If a tangent to the ellipse $x^2 + 4y^2 = 4$ meets the tangents at the extremities of its major axis at 30. B and C, then the circle with BC as diameter passes through the point:
 - (D) (C) (A) (-1, 1)**(B)** (1, 1)
- A ray of light through (2, 1) is reflected to a point P on the y-axis and then passes through the 31. point (5, 3). If this reflected ray is the directrix of an ellipse with eccentricity $\frac{1}{2}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be:
 - (A) 11x+7y+8=0 or 11x+7y-15=0**(B)** 2x-7y-39=0 or 2x-7y-7=0
 - 2x-7y+29=0 or 2x-7y-7=0 **(D)** 11x-7y-8=0 or 11x+7y+15=0
- Let E be an ellipse whose axes are parallel to the co-ordinates axes, having its centre at (3, -4), **32**. one focus at (4, -4) and one vertex at (5, -4). If mx - y = 4, m > 0 is a tangent to the ellipse E, then the value of $5m^2$ is equal to _____.
- If the minimum area of the triangle formed by a tangent to the ellipse $\frac{x^2}{h^2} + \frac{y^2}{4a^2} = 1$ and the co-33. ordinate axis is kab, then k is equal to _____

- A tangent and a normal are drawn at the point P(2, -4) on the parabola $y^2 = 8x$, which meet the 34. directrix of the parabola at the points A and B respectively. If Q(a, b) is a point such that AQBP is square, then 2a+b is equal to:
 - (A) -18
- **(B)**
- (C) -12
- **(D)** -16
- If $x^2 + 9y^2 4x + 3 = 0$, $x, y \in \mathbb{R}$, then x and y respectively lie in the intervals: 35.
 - (A) [1, 3] and $\left| -\frac{1}{3}, \frac{1}{3} \right|$

(B) $\left| -\frac{1}{3}, \frac{1}{3} \right|$ and $\left| -\frac{1}{3}, \frac{1}{3} \right|$

(C) $\left[-\frac{1}{3}, \frac{1}{3} \right]$ and [1, 3]

- **(D)** [1, 3] and [1, 3]
- The point $P(-2\sqrt{6}, \sqrt{3})$ lies on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ having eccentricity $\frac{\sqrt{5}}{2}$. If the tangent 36. and normal at P to the hyperbola intersect its conjugate axis at the points Q and R respectively, then QR is equal to:
 - (A)
- $4\sqrt{3}$ **(B)**
- $3\sqrt{6}$ (C)
- (D)
- The locus of the mid points of the chords of the hyperbola $x^2 y^2 = 4$, which touch the parabola 37. $u^2 = 8x$, is:

- $x^{3}(x-2) = y^{2}$ (B) $y^{3}(x-2) = x^{2}$ (C) $y^{2}(x-2) = x^{3}$ (D) $x^{2}(x-2) = y^{3}$
- On the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$ let P be a point in the second quadrant such that the tangent at P 38. to the ellipse is perpendicular to the line x+2y=0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of $(5-e^2)$. A is:
 - (A)

- Consider the parabola with vertex $\left(\frac{1}{2}, \frac{3}{4}\right)$ and the directrix $y = \frac{1}{2}$. Let P be the point where the 39. parabola meets the line $x = -\frac{1}{2}$. If the normal to the parabola at P intersects the parabola again in the point Q, then $(PQ)^2$ is equal to:
 - (A)
- (c) $\frac{125}{16}$
- Let θ be the acute angle between the tangents to the ellipse $\frac{x^2}{9} + \frac{y^2}{1} = 1$ and the circle $x^2 + y^2 = 3$ 40. at their point of intersection in the first quadrant. Then $\tan\theta$ is equal to:
 - (A)
- **(B)**
- (C)
- The line $12x\cos\theta + 5y\sin\theta = 60$ is tangent to which of the following curves? 41.

(A)
$$25x^2 + 12y^2 = 3600$$

(B)
$$x^2 + y^2 = 169$$

(C)
$$144x^2 + 25y^2 = 3600$$

(D)
$$x^2 + y^2 = 60$$

- **42.** The length of the latus rectum of a parabola, whose vertex and focus are on the positive x axis at a distance R and S (> R) respectively from the origin, is:
 - (A) 4(S-R)
- **(B)**
- 2(S + R)
- $\mathbf{C)} \qquad 4(S+R)$
- **(D)** 2(S-R)
- 43. Let $A(\sec \theta, 2\tan \theta)$ and $B(\sec \phi, 2\tan \phi)$, where $\theta + \phi = \pi/2$, be two points on the hyperbola $2x^2 y^2 = 2$. If (α, β) is the point of the intersection of the normals to the hyperbola at A and B, then $(2\beta)^2$ is equal to _____.
- 44. If two tangents drawn from a point P to the parabola $y^2 = 16(x-3)$ are at right angles, then the locus of point P is:
 - **(A)** x+1=0
- **(B)**
- x + 3 = 0
- (C) x+4=0
- **(D)** x+2=0

JEE Advanced 2021

- Let *E* denote the parabola $y^2 = 8x$. Let P = (-2,4), and let *Q* and *Q'* be two distinct points on *E* such that the lines PQ and PQ' are tangents to *E*. Let *F* be the focus of *E*. Then which of the following statements is (are) **TRUE**?
 - (A) The triangle *PFQ* is a right-angled triangle
 - **(B)** The triangle *QPQ'* is a right-angled triangle
 - (C) The distance between P and F is $5\sqrt{2}$
 - **(D)** F lies on the line joining Q and Q'

Question Stem for Question Nos. 2 and 3

Question Stem

Consider the region $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0 \text{ and } y^2 \le 4 - x\}$. Let F be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in F. Let (α, β) be a point where the circle C meets the curve $y^2 = 4 - x$.

- **2.** The radius of the circle C is _____.
- **3.** The value of α is _____.
- Let *E* be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. For any three distinct points *P*, *Q* and *Q'* on *E*, let *M* (*P*, *Q*) be the mid-point of the line segment joining *P* and *Q*, and *M* (*P*, *Q'*) be the mid-point of the line segment joining *P* and *Q*. Then the maximum possible value of the distance between *M* (*P*, *Q*) and *M* (*P*, *Q'*), as *P*, *Q* and *Q'* vary on *E*, is ______.

Conic Sections Class - XI | Mathematics

JEE Main 2022

- 1. A particle is moving in the xy-plane along a curve C passing through the point (3, 3). The tangent to the curve C at the point P meets the x-axis at Q. If the y-axis bisects the segment PQ, then C is a parabola with:
 - length of latus rectum 3 (A)
- (B) length of latus rectum 6

focus $\left(\frac{4}{3}, 0\right)$

- focus $\left(0, \frac{3}{4}\right)$ **(D)**
- Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$, a > 2, 2. having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the y-axis, be $6\sqrt{3}$. Then the eccentricity of the ellipse is:

- **(B)** $\frac{1}{2}$ **(C)** $\frac{1}{\sqrt{2}}$ **(D)** $\frac{\sqrt{3}}{4}$
- Let the hyperbola $H: \frac{x^2}{c^2} y^2 = 1$ and the ellipse $E: 3x^2 + 4y^2 = 12$ be such that the length of 3. latus rectum of H is equal to the length of latus rectum of E. If e_H and e_E are the eccentricities of H and E respectively, then the value of $12\left(e_H^2+e_E^2\right)$ is equal to _____.
- 4. Let P_1 be parabola with vertex (3, 2) and focus (4, 4) and P_2 be its mirror image with respect to the line x+2y=6. Then the directrix of P_2 is x+2y=____.
- Let $x^2 + y^2 + Ax + By + C = 0$ be a circle passing through (0, 6) and touching the parabola $y = x^2$ 5. at (2, 4). Then A + C is equal to:
 - (A) 16
- 88/5
- (C)
- **(D)**
- Let $\lambda x 2y = \mu$ be a tangent to the hyperbola $a^2x^2 y^2 = b^2$. Then $\left(\frac{\lambda}{a}\right)^2 \left(\frac{\mu}{b}\right)^2$ is equal to: 6.
 - (A) -2
- **(B)**
- (C)
- **(D)**

- If two tangents drawn from a point (α, β) lying on the ellipse $25x^2 + 4y^2 = 1$ to the parabola 7. $y^2 = 4x$ are such that the slope of one tangent is four times the other, then the value of $(10\alpha + 5)^2 + (16\beta^2 + 50)^2$ equals _____
- If the line y = 4 + kx, k > 0, is the tangent to the parabola $y = x x^2$ at the point P and V is the 8. vertex of the parabola, then the slope of the line through P and V is:
 - (A)
- (C)
- The line y = x + 1 meets the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$ at two points P and Q. If r is the radius of the 9. circle with PQ as diameter then $\left(3r\right)^2$ is equal to:
 - (A) 20
- (B) 12
- (C) 11
- (D) 8
- Let the eccentricity of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ be $\frac{5}{4}$. If the equation of the normal at the point 10. $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8\sqrt{5}x + \beta y = \lambda$, then $\lambda - \beta$ is equal to ______.
- If $y=m_1x+c_1$ and $y=m_2x+c_2$, $m_1\neq m_2$ are two common tangents of circle $x^2+y^2=2$ and 11. parabola $y^2 = x$, then the value of $8 \mid m_1 m_2 \mid$ is equal to:
 - $3+4\sqrt{2}$ (A)
- **(B)** $-5+6\sqrt{2}$ **(C)** $-4+3\sqrt{2}$
- (D)
- Let $x=2t, y=\frac{t^2}{2}$ be a conic. Let S be the focus and B be the point on the axis of the conic such **12**. that $SA \perp BA$, where A is any point on the conic. If k is the ordinate of the centroid of ΔSAB , then $\lim_{t\to 1} k$ is equal to:
 - (A)
- **(B)** $\frac{19}{18}$ **(C)** $\frac{11}{18}$ **(D)** $\frac{13}{18}$
- If m is the slope of a common tangent to the curves $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and $x^2 + y^2 = 12$, then $12m^2$ is **13**. equal to:
 - (A) 6
- **(B)** 9
- (C) 10
- **(D)** 12
- 14. The locus of the mid point of the line segment joining the point (4, 3) and the points on the ellipse $x^2 + 2y^2 = 4$ is an ellipse with eccentricity:
- **(B)**
- (C)

15.	The normal to the hyperbola	$\frac{x^2}{a^2}$	$-\frac{y^2}{9} = 1$	at the point (8, 3	$\sqrt{3}$) or	n it passes	through the	point:
-----	-----------------------------	-------------------	----------------------	--------------------	-----------------	-------------	-------------	--------

- $(15, -2\sqrt{3})$ (A)
- **(B)** $(9, 2\sqrt{3})$
- (C) $(-1, 9\sqrt{3})$ (D) $(-1, 6\sqrt{3})$
- Let a line L_1 be tangent to the hyperbola $\frac{x^2}{16} \frac{y^2}{4} = 1$ and let L_2 be the line passing through the 16. origin and perpendicular to L_1 . If the locus of the point of intersection of L_1 and L_2 is $(x^2+y^2)^2 = \alpha x^2 + \beta y^2$, then $\alpha + \beta$ is equal to _____.
- Let the normal at the point P on the parabola $y^2 = 6x$ pass through the point (5, -8). If the **17.** tangent at P to the parabola intersects its directrix at the point Q, then the ordinate of the point Q is:
 - -3 (A)
- **(B)** $-\frac{9}{4}$ **(C)** $-\frac{5}{2}$
- Let the common tangents to the curves $4(x^2 + y^2) = 9$ and $y^2 = 4x$ intersect at the point Q. Let an 18. ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and l respectively denote the eccentricity and the length of the latus rectum of this ellipse, then $\frac{l}{2}$ is equal to_____.
- If the equation of the parabola, whose vertex is at (5, 4) and the directrix is 19. 3x + y - 29 = 0, is $x^2 + ay^2 + bxy + cx + dy + k = 0$, then a + b + c + d + k is equal to:
 - (A)
- (C)
- Let the eccentricity of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$, be $\frac{1}{4}$. If this ellipse passes through the point 20. $\left(-4\sqrt{\frac{2}{5}},3\right)$, then a^2+b^2 is equal to:
 - (A) 29
- (B) 31
- (C) 32
- (D) 34
- A circle of radius 2 unit passes through the vertex and the focus of the parabola $y^2 = 2x$ and 21. touches the parabola $y = \left(x - \frac{1}{4}\right)^2 + \alpha$, where $\alpha > 0$. Then $\left(4\alpha - 8\right)^2$ is equal to _____.
- Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the **22**. hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Let e' and l' respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If $e^2 = \frac{11}{14}l$ and $(e')^2 = \frac{11}{8}l'$, then the value of 77a + 44b is equal to:
 - (A) 100
- **(B)** 110
- (C) 120
- **(D)** 130

23.	If vertex of a parabola is $(2,-1)$ and the equation of its directrix is $4x-3y=21$, then the length of							
	its latus rectum is:							
	(A)	2	(B)	8	(C)	12	(D)	16
24.	Let the	eccentricity of	the hype	erbola $H: \frac{x^2}{a^2}$	$\frac{y^2}{b^2} = 1 b$	e $\sqrt{\frac{5}{2}}$ and leng	th of its	latus rectum be
	$6\sqrt{2}$, If	f y = 2x + c is a	tangent	to the hyperbola	H. then	the value of c^2	is equal	to:
	(A)	18	(B)	20	(C)	24	(D)	32
25 .	Let P:	$y^2 = 4ax, a > 0$	be a pa	rabola with focu	ıs S. Let	the tangents to	the par	abola <i>P</i> make an
		TT.						he value of a for
	which A	A, B and S are cc	ollinear i	s:				
	(A)	8 only	(B)	2 only	(C)	$\frac{1}{4}$ only	(D)	Any $a > 0$
26.	Let PQ	be a focal chord	of the pa	arabola $y^2 = 4x$	such th	at it subtends a	n angle	of $\frac{\pi}{2}$ at the point
	(3,0). Let the line segment PQ be also a focal chord of the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a^2 > b^2$. If e is							
	the eccentricity of the ellipse <i>E</i> , then the value of $\frac{1}{e^2}$ is equal to:							
	(A)	$1+\sqrt{2}$	(B)	$3+2\sqrt{2}$	(C)	$1+2\sqrt{3}$	(D)	$4 + 5\sqrt{3}$
27.	Let H:	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a >$	0,b>0,	be a hyperbola s	such tha	t the sum of leng	gths of th	ne transverse and
	the conjugate axes is $4(2\sqrt{2} + \sqrt{14})$. If the eccentricity H is $\frac{\sqrt{11}}{2}$, then the value of $a^2 + b^2$ is							
	equal to	o						
28.	If the e	llipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$	1 meets	s the line $\frac{x}{7} + \frac{1}{2^{x}}$	$\frac{y}{\sqrt{6}} = 1$ or	n the <i>x</i> -axis and	l the line	$e^{\frac{x}{7}} - \frac{y}{2\sqrt{6}} = 1 \text{ on }$
	the y-a	xis, then the ecc	entricity	of the ellipse is:				
	(A)	$\frac{5}{7}$	(B)	$\frac{2\sqrt{6}}{7}$	(C)	$\frac{3}{7}$	(D)	$\frac{2\sqrt{5}}{7}$
29.	The tar	ngents at the poi	ints $A(1,$	3) and $B(1, -1)$	on the pa	arabola $y^2 - 2x$	-2y=1	meet at the point
	P. Then the area (in unit ²) of the triangle PAB is:							
	(A)	4	(B)	6	(C)	7	(D)	8
30.	Let the	foci of the ellips	se $\frac{x^2}{16} + \frac{y}{2}$	$\frac{\sqrt{2}}{7}$ = 1 and the h	yperbola	$\frac{x^2}{144} - \frac{y^2}{\alpha} = \frac{1}{25}$	coincide	. Then the length
	of the la	atus rectum of tl	he hyper	bola is:				
	(A)	$\frac{32}{9}$	(B)	$\frac{18}{5}$	(C)	$\frac{27}{4}$	(D)	$\frac{27}{10}$

- Let P(a, b) be a point on the parabola $y^2 = 8x$ such that the tangent at P passes through the 31. centre of the circle $x^2 + y^2 - 10x - 14y + 65 = 0$. Let A be the product of all possible values of a and B be the product of all possible values of b. Then the value of A + B is equal to:
 - (A)

- An ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the vertices of the hyperbola $H: \frac{x^2}{40} \frac{y^2}{64} = -1$. Let **32**. the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H, respectively. Let the product of the eccentricities of E and H be 1/2. If l is the length of the latus rectum of the ellipse E, then the value of 113l is equal to _____.
- If the length of the latus rectum of the ellipse $x^2 + 4y^2 + 2x + 8y \lambda = 0$ is 4, and l is the length 33. of its major axis, then $\lambda + l$ is equal to _____.
- If the tangents drawn at the points P and Q on the parabola $y^2 = 2x 3$ intersect at the point 34. R(0,1), then the orthocenter of the triangle PQR is:
 - (A) (0, 1)
- **(B)** (2, -1)
- (6, 3)
- **(D)** (2, 1)
- For the hyperbola $H: x^2 y^2 = 1$ and the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b > 0$, let the 35.
 - (1) eccentricity of E be reciprocal of the eccentricity of H, and
 - the line $y = \sqrt{\frac{5}{2}}x + K$ be a common tangent of E and H. **(2)**
 - Then $4(a^2+b^2)$ is equal to _____.
- Let the equation of two diameters of a circle $x^2 + y^2 2x + 2fy + 1 = 0$ be 2px y = 1 and 36. 2x + py = 4p. Then the slope $m \in (0, \infty)$ of the tangent to the hyperbola $3x^2 - y^2 = 3$ passing through the centre of the circle is equal to__
- The sum of diameters of the circles that touch (i) the parabola $75x^2 = 64(5y 3)$ at the point **37.** $\left(\frac{8}{5},\frac{6}{5}\right)$ and (ii) the *y*-axis, is equal to _____.
- Let the hyperbola $H: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ pass through the point $(2\sqrt{2}, -2\sqrt{2})$. A parabola is drawn 38.

whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola

- (A) $(2\sqrt{3}, 3\sqrt{2})$
- **(B)**
- $(3\sqrt{3}, -6\sqrt{2})$ (C) $(\sqrt{3}, -\sqrt{6})$ (D) $(3\sqrt{6}, 6\sqrt{2})$

- **39.** Let the tangents at the points P and Q on the ellipse $\frac{x^2}{2} + \frac{y^2}{4} = 1$ meet at the point $R(\sqrt{2}, 2\sqrt{2} 2)$. If S is the focus of the ellipse on its negative major axis, then $SP^2 + SQ^2$ is equal to .
- 40. Two tangent lines l_1 and l_2 are drawn from the point (2, 0) to the parabola $2y^2 = -x$. If the lines l_1 and l_2 are also tangent to the circle $(x-5)^2 + y^2 = r$, then 17r is equal to ______.
- 41. Let a line L pass through the point of intersection of the lines bx+10y-8=0 and $2x-3y=0, b\in R-\left\{\frac{4}{3}\right\}$. If the line L also passes through the point $(1,\ 1)$ and touches the circle $17\left(x^2+y^2\right)=16$, then the eccentricity of the ellipse $\frac{x^2}{5}+\frac{y^2}{b^2}=1$ is:
 - (A) $\frac{2}{\sqrt{5}}$ (B) $\sqrt{\frac{3}{5}}$ (C) $\frac{1}{\sqrt{5}}$ (D) $\sqrt{\frac{2}{5}}$
- **42.** Let the focal chord of the parabola $P: y^2 = 4x$ along the line L: y = mx + c, m > 0 meet the parabola at the points M and N. Let the line L be a tangent to the hyperbola $H: x^2 y^2 = 4$. If O is the vertex of P and F is the focus of H on the positive x-axis, then the area of the quadrilateral OMFN is:
 - **(A)** $2\sqrt{6}$ **(B)** $2\sqrt{14}$ **(C)** $4\sqrt{6}$ **(D)** $4\sqrt{14}$
- 43. The acute angle between the pair of tangents drawn to the ellipse $2x^2 + 3y^2 = 5$ from the point (1, 3) is:
 - **(A)** $\tan^{-1} \left(\frac{16}{7\sqrt{5}} \right)$ **(B)** $\tan^{-1} \left(\frac{24}{7\sqrt{5}} \right)$
 - (C) $\tan^{-1} \left(\frac{32}{7\sqrt{5}} \right)$ (D) $\tan^{-1} \left(\frac{3+8\sqrt{5}}{35} \right)$
- **44.** The equation of a common tangent to the parabolas $y = x^2$ and $y = -(x-2)^2$ is:
 - (A) y = 4(x-2) (B) y = 4(x-1) (C) y = 4(x+1) (D) y = 4(x+2)
- **45.** If the line x-1=0 is a directrix of the hyperbola $kx^2-y^2=6$, then the hyperbola passes through the point:
 - (A) $(-2\sqrt{5}, 6)$ (B) $(-\sqrt{5}, 3)$ (C) $(\sqrt{5}, -2)$ (D) $(2\sqrt{5}, 3\sqrt{6})$
- **46.** If the length of the latus rectum of a parabola, whose focus is (a,a) and the tangent at its vertex is x + y = a, is 16, then |a| is equal to:
 - **(A)** $2\sqrt{2}$ **(B)** $2\sqrt{3}$ **(C)** $4\sqrt{2}$ **(D)** 4

- A common tangent T to the curves $C_1: \frac{x^2}{4} + \frac{y^2}{9} = 1$ and $C_2: \frac{x^2}{42} \frac{y^2}{143} = 1$ does not pass through the fourth quadrant. If T touches C_1 at (x_1, y_1) and C_2 at (x_2, y_2) , then $|2x_1 + x_2|$ is equal to
- **48.** Let the tangent drawn to the parabola $y^2 = 24x$ at the point (α, β) is perpendicular to the line 2x + 2y = 5. Then the normal to the hyperbola $\frac{x^2}{\alpha^2} \frac{y^2}{\beta^2} = 1$ at the point $(\alpha + 4, \beta + 4)$ does **NOT** pass through the point:
 - **(A)** (25, 10)
- **(B)** (20, 12)
- **(C)** (30, 8)
- **(D)** (15, 13)
- 49. Let the function $f(x) = 2x^2 \log_e x$, x > 0, be decreasing in (0, a) and increasing in (a, 4). A tangent to the parabola $y^2 = 4ax$ at a point P on it passes through the point (8a, 8a 1) but does not pass through the point $\left(-\frac{1}{a}, 0\right)$. If the equation of the normal at P is $\frac{x}{\alpha} + \frac{y}{\beta} = 1$, then $\alpha + \beta$ is equal to_____.

Inverse Trigonometric Functions	Class - XII Mathematics

JEE Main 2021

1.	$\lim_{n\to\infty} \tan \left\{ \sum_{r=1}^{n} \frac{1}{r} \right\}$	$\int_{1}^{2} \tan^{-1} \left(\frac{1}{1} \right)$	$\frac{1}{r+r^2}$) is equal to	0
----	--	---	-------------------	---------------	---

2. $\csc \left[2 \cot^{-1}(5) + \cos^{-1}\left(\frac{4}{5}\right) \right]$ is equal to:

(A) $\frac{65}{56}$ (B) $\frac{56}{33}$ (C) $\frac{65}{33}$ (D) $\frac{75}{56}$

3. If $\frac{\sin^{-1} x}{a} = \frac{\cos^{-1} x}{b} = \frac{\tan^{-1} y}{c}$; 0 < x < 1, then the value of $\cos\left(\frac{\pi c}{a+b}\right)$ is :

(A) $\frac{1-y^2}{1+y^2}$ (B) $\frac{1-y^2}{2y}$ (C) $1-y^2$ (D) $\frac{1-y^2}{y\sqrt{y}}$

4. If 0 < a, b < 1, and $\tan^{-1} a + \tan^{-1} b = \frac{\pi}{4}$, then the value of $(a + b) - \left(\frac{a^2 + b^2}{2}\right) + \left(\frac{a^3 + b^3}{3}\right) - \left(\frac{a^4 + b^4}{4}\right) + \dots$

(A) e **(B)** $e^2 - 1$ **(C)** $\log_e \left(\frac{e}{2}\right)$ **(D)** $\log_e 2$

5. A possible value of $\tan \left(\frac{1}{4} \sin^{-1} \frac{\sqrt{63}}{8} \right)$ is:

(A) $\sqrt{7} - 1$ (B) $2\sqrt{2} - 1$ (C) $\frac{1}{\sqrt{7}}$ (D) $\frac{1}{2\sqrt{2}}$

6. The number of solutions of the equation $\sin^{-1}\left[x^2 + \frac{1}{3}\right] + \cos^{-1}\left[x^2 - \frac{2}{3}\right] = x^2$, for $x \in [-1, 1]$ and [x] denotes the greatest integer less than or equal to x, is:

(A) 2 (B) 0 (C) Infinite (D) 4

7. The real values function $f(x) = \frac{\cos ec^1 x}{\sqrt{x - [x]}}$, where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to:

(A) all reals except the interval [-1, 1] (B) all non-integers except the interval [-1, 1]

(C) all integers except 0, -1, 1 (D) all reals except integers

8. Given that the inverse trigonometric functions take principal values only. Then the number of real values of x which satisfy $\sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$ is equal to:

(A) 0 (B) 3 (C) 1 (D) 2

9. If $\cot^{-1}(\alpha) = \cot^{-1} 2 + \cot^{-1} 8 + \cot^{-1} 18 + \cot^{-1} 32 + \dots$ upto 100 terms, then α is: (A) 1.00 (B) 1.02 (C) 1.03 (D) 1.01

The sum of possible values of x for $\tan^{-1}(x+1) + \cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\left(\frac{8}{31}\right)$ is: 10.

(A)
$$-\frac{30}{4}$$

(B)
$$-\frac{32}{4}$$

(B)
$$-\frac{32}{4}$$
 (C) $-\frac{33}{4}$

(D)
$$-\frac{31}{4}$$

Let $S_k = \sum_{k=1}^{K} \tan^{-1} \left(\frac{6^r}{2^{2r+1} + 3^{2r+1}} \right)$. Then $\lim_{k \to \infty} S_k$ is equal to:

(A)
$$\cot^{-1}\left(\frac{3}{2}\right)$$

(B)
$$\frac{\tau}{2}$$

$$\cot^{-1}\left(\frac{3}{2}\right)$$
 (B) $\frac{\pi}{2}$ (C) $\tan^{-1}\left(\frac{3}{2}\right)$ (D) $\tan^{-1}(3)$

The number of real roots of the equation $\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{4}$ is : 12.

The value of $\tan \left(2 \tan^{-1} \left(\frac{3}{5}\right) + \sin^{-1} \left(\frac{5}{13}\right)\right)$ is equal to: 13.

(A)
$$\frac{-291}{76}$$

(B)
$$\frac{220}{21}$$

(C)
$$\frac{151}{63}$$

(D)
$$\frac{-181}{69}$$

If the domain of the function $f(x) = \frac{\cos^{-1} \sqrt{x^2 - x + 1}}{\sqrt{\sin^{-1} \left(\frac{2x - 1}{2}\right)}}$ is the interval $(\alpha, \beta]$, then $\alpha + \beta$ is equal to: 14.

$$\mathbf{B}) \qquad \frac{1}{2}$$

The domain of the function $f(x) = \sin^{-1} \left(\frac{3x^2 + x - 1}{(x - 1)^2} \right) + \cos^{-1} \left(\frac{x - 1}{x + 1} \right)$ is: 15.

(A)
$$\left[\frac{1}{4}, \frac{1}{2}\right] \cup \{0\}$$

(B)
$$\left[0, \frac{1}{2}\right]$$

(A)
$$\left[\frac{1}{4}, \frac{1}{2}\right] \cup \{0\}$$
 (B) $\left[0, \frac{1}{2}\right]$ (C) $\left[-2, 0\right] \cup \left[\frac{1}{4}, \frac{1}{2}\right]$ (D) $\left[0, \frac{1}{4}\right]$

$$\left[0, \frac{1}{4}\right]$$

If $(\sin^{-1} x)^2 - (\cos^{-1} x)^2 = a$; 0 < x < 1, $a \ne 0$, then the value of $2x^2 - 1$ is: 16.

(A)
$$\cos\left(\frac{2a}{\pi}\right)$$
 (B) $\sin\left(\frac{4a}{\pi}\right)$ (C) $\sin\left(\frac{2a}{\pi}\right)$ (D) $\cos\left(\frac{4a}{\pi}\right)$

(B)
$$\sin\left(\frac{1}{2}\right)$$

$$\sin\left(\frac{2a}{\pi}\right)$$

D)
$$\cos\left(\frac{4a}{\pi}\right)$$

If $\sum_{i=1}^{30} \tan^{-1} \frac{1}{2r^2} = p_i$, then the value of $\tan p$ is:

(A)
$$\frac{51}{50}$$
 (B) $\frac{50}{51}$

(C)
$$\frac{101}{102}$$

Let $f(x) = \cos \left(2 \tan^{-1} \sin \left(\cot^{-1} \sqrt{\frac{1-x}{x}} \right) \right)$, 0 < x < 1. Then: 18.

(A)
$$(1-x)^2 f'(x) + 2(f(x))^{2=0}$$

(B)
$$(1-x)^2 f'(x) - 2(f(x))^2 0$$

(C)
$$(1+x)^2 f'(x) + 2(f(x))^2 = 0$$

(D)
$$(1+x)^2 f'(x) - 2(f(x))^2 = 0$$

 $\cos^{-1}(\cos(-5)) + \sin^{-1}(\sin(6)) - \tan^{-1}(\tan(12))$ is equal to: 19.

(The inverse trigonometric functions take the principal values)

(A)
$$4\pi - 11$$

(B)
$$3\pi +$$

(C)
$$4\pi -$$

(D)
$$3\pi - 11$$

JEE Advanced 2021

1. For any positive integer n, let $S_n:(0,\infty)\to R$ be defined by

$$S_n(x) = \sum_{k=1}^n \cot^{-1} \left(\frac{1 + k(k+1)x^2}{x} \right)$$

Where for any $x \in R$, $\cot^{-1}(x) \in (0,\pi)$ and $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then which of the following statements is (are) TRUE?

(A)
$$S_{10}(x) = \frac{\pi}{2} - \tan^{-1}\left(\frac{1 + 11x^2}{10x}\right)$$
, for all $x > 0$

(B)
$$\lim_{n \to \infty} \cot(S_n(x)) = x \text{, for all } x > 0$$

(C) The equation
$$S_3(x) = \frac{\pi}{4}$$
 has a root in $(0, \infty)$

(D)
$$\tan(S_n(x)) \le \frac{1}{2}$$
, for all $n \ge 1$ and $x > 0$

Inverse Trigonometric Functions

Class - XII | Mathematics

JEE Main 2022

1.
$$\tan\left(2\tan^{-1}\frac{1}{5} + \sec^{-1}\frac{\sqrt{5}}{2} + 2\tan^{-1}\frac{1}{8}\right)$$
 is equal to:

- **(A)** 1

2. If
$$0 < x < \frac{1}{\sqrt{2}}$$
 and $\frac{\sin^{-1} x}{\alpha} = \frac{\cos^{-1} x}{\beta}$, then a value of $\sin\left(\frac{2\pi\alpha}{\alpha + \beta}\right)$ is:

- (A) $4\sqrt{(1-x^2)}(1-2x^2)$
- (B) $4x\sqrt{1-x^2}\left(1-2x^2\right)$ (D) $4\sqrt{1-x^2}\left(1-4x^2\right)$
- $2x\sqrt{1-x^2}$ $(1-4x^2)$

3. If the maximum value of
$$a$$
, for which the function $f_a(x) = \tan^{-1} 2x - 3ax + 7$ is non-decreasing in $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$, is \bar{a} , then $f_{\bar{a}}\left(\frac{\pi}{8}\right)$ is equal to:

(A)
$$8 - \frac{9\pi}{4(9 + \pi^2)}$$
 (B) $8 - \frac{4\pi}{9(4 + \pi^2)}$ (C) $8\left(\frac{1 + \pi^2}{9 + \pi^2}\right)$ (D) $8 - \frac{\pi}{4}$

$$8 - \frac{4\pi}{9(4+\pi^2)}$$
 (

$$8\left(\frac{1+\pi^2}{9+\pi^2}\right)$$

5)
$$8 - \frac{\pi}{4}$$

4. Let
$$x * y = x^2 + y^3$$
 and $(x * 1) * 1 = x * (1 * 1)$. Then a value of $2 \sin^{-1} \left(\frac{x^4 + x^2 - 2}{x^4 + x^2 + 2} \right)$ is:

- (C)

5. If
$$y = \tan^{-1}(\sec x^3 - \tan x^3)$$
, $\frac{\pi}{2} < x^3 < \frac{3\pi}{2}$, then:

(A) xy'' + 2y' = 0

(B) $x^2y'' - 6y + \frac{3\pi}{2} = 0$

(C) $x^2y'' - 6y + 3\pi = 0$

6. The set of all values of
$$k$$
 for which $(\tan^{-1} x)^3 + (\cot^{-1} x)^3 = k\pi^3$, $x \in R$, is the interval:

- (A) $\left| \frac{1}{32}, \frac{7}{8} \right|$ (B) $\left(\frac{1}{24}, \frac{13}{16} \right)$ (C) $\left| \frac{1}{48}, \frac{13}{16} \right|$ (D) $\left[\frac{1}{32}, \frac{9}{8} \right]$

7. The value of
$$\tan^{-1} \left(\frac{\cos\left(\frac{15\pi}{4}\right) - 1}{\sin\left(\frac{\pi}{4}\right)} \right)$$
 is equal to:

- (A)
- (B) $-\frac{\pi}{8}$ (C) $-\frac{5\pi}{12}$

8. If the inverse trigonometric functions take principal values, then

$$\cos^{-1}\left(\frac{3}{10}\cos\left(\tan^{-1}\left(\frac{4}{3}\right)\right) + \frac{2}{5}\sin\left(\tan^{-1}\left(\frac{4}{3}\right)\right)\right) \text{ is equal to:}$$

- (A)
- (B) $\frac{\pi}{4}$
- C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{6}$
- 9. Let $f(x) = 2\cos^{-1} x + 4\cot^{-1} x 3x^2 2x + 10$, $x \in [-1,1]$. If [a,b] is the range of the function f, then 4a b is equal to:
 - **(A)** 11
- **B)** 11 1
- (C) 11
- **(D)** 15 π

- 10. The value of $\cot \left(\sum_{n=1}^{50} \tan^{-1} \left(\frac{1}{1+n+n^2} \right) \right)$ is:
 - (A) $\frac{26}{25}$
- **(B)** $\frac{25}{26}$
- C) $\frac{50}{51}$
- **(D)** $\frac{52}{51}$
- 11. $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\left(\tan\frac{3\pi}{4}\right)$ is equal to:
 - (A) $\frac{11\pi}{12}$
- **(B)** $\frac{17\pi}{12}$
- (C) $\frac{31\pi}{12}$
- **(D)** $\frac{-3\pi}{4}$
- 12. The value of $\lim_{n\to\infty} 6 \tan \left\{ \sum_{r=1}^n \tan^{-1} \left(\frac{1}{r^2 + 3r + 3} \right) \right\}$ is equal to:
 - (A)
- B)
- (C)
- **(D)** 6
- **13.** $50 \tan \left(3 \tan^{-1} \left(\frac{1}{2} \right) + 2 \cos^{-1} \left(\frac{1}{\sqrt{5}} \right) \right) + 4 \sqrt{2} \tan \left(\frac{1}{2} \tan^{-1} \left(2 \sqrt{2} \right) \right)$ is equal to _____.

|--|

JEE Main 2021

				$x-\frac{1}{2}$	
1.	Let $f: R \to R$ be defined as $f(x) = 2x - 1$ and	$g: R - \{1\} \rightarrow R$ be	defined as	$g(x) = \frac{2}{x-1}.$	Then th
	composition function $f(g(x))$ is:				

- (A) onto but not one-one
- (B) both one-one and onto
- (C) neither one-one nor onto
- (D) one-one but not onto

2. If
$$a + \alpha = 1$$
, $b + \beta = 2$ and $af(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}$, $x \ne 0$, then the value of the expression
$$\frac{f(x) + f\left(\frac{1}{x}\right)}{x + \frac{1}{x}}$$

- 3. Let $f, g: N \to N$ such that $f(n+1) = f(n) + f(1) \forall n \in N$ and g be any arbitrary function. Which of the following statements is NOT true?
 - If f is onto, then $f(n) = n \ \forall \ n \in \mathbb{N}$
- (B) If *g* is onto, then *fog* is one-one
- (C) If fog is one-one, then g is one-one
- (D) f is one-one
- A function f(x) is given by $f(x) = \frac{5^x}{5^x + 5}$, then the sum of the series 4.

$$f\left(\frac{1}{20}\right) + f\left(\frac{2}{20}\right) + f\left(\frac{3}{20}\right) + \dots + f\left(\frac{39}{20}\right) \text{ is equal to:}$$

$$\textbf{(A)} \qquad \frac{29}{2} \qquad \textbf{(B)} \qquad \frac{19}{2} \qquad \textbf{(C)} \qquad \frac{49}{2}$$

- The number of solutions of the equation $\log_4(x-1) = \log_2(x-3)$ is _____. 5.
- Let $f(x) = \sin^{-1} x$ and $g(x) = \frac{x^2 x 2}{2x^2 x 6}$. If $g(2) = \lim_{x \to 2} g(x)$, then the domain of the function *fog* is: **(A)** $(-\infty, -2] \cup \left[-\frac{3}{2}, \infty \right)$ **(B)** $(-\infty, -2] \cup \left[-1, \infty \right)$ **(C)** $(-\infty, -2] \cup \left[-\frac{4}{3}, \infty \right)$ **(D)** $(-\infty, -1] \cup [2, \infty)$

- If the functions are defined as $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$, then what is the common domain of the 7. following functions: f + g, f - g, f / g, g / f, g - f where $(f \pm g)(x) = f(x) \pm g(x)$, $(f / g)(x) = \frac{f(x)}{g(x)}$
- (C) $0 \le x \le 1$ (D)

- The inverse of $y = 5^{\log x}$ is: 8.

- $x = 5^{\log y}$ **(B)** $x = y^{\log 5}$ **(C)** $x = 5^{\frac{1}{\log y}}$ **(D)** $x = y^{\frac{1}{\log 5}}$
- Let $f: R \{3\} \to R \{1\}$ defined by $f(x) = \frac{x-2}{x-3}$ 9.

Let $g: R \to R$ be given as g(x) = 2x - 3. Then, the sum of all the values of x for which $f^{-1}(x) + g^{-1}(x) = \frac{13}{2}$ is equal to:

- (C)
- (D)

10. The number of elements in the set $\{x \in R : (\mid x \mid -3) \mid x + 4\}$						=6 is equal to :			
	(A)	1	(B)	3	(C)	2	(D)	4	
11.	Consid	er functions f :	$A \rightarrow B$ a	and $g: B \to C(A,$	$B, C \subseteq R$	such that (gof)	⁻¹ exists,	then:	
	(A)	f is one-one and	Ū		(B)	f and g both are			
	(C)	f is onto and g i	is one-or	ne	(D)	f and g both are	e one-on	е	
12.	Let g :	$N \to N$ be defined	d as						
	g(3n+1) = 3n+2, g(3n+2) = 3n+3,								
		2) = 3n + 3, 3) = $3n + 1$, for all	$n \geq 0$.						
	-	hich of the follov		ements is true?					
	(A)		-	$nction f: N \to N$	such th	nat fog = f			
	(B)	There exists a c	ne-one f	function $f: N \rightarrow$	N such	that fog = f			
	(C)	gogog = g							
	(D)	There exists a f	unction	$f: N \to N \text{ such the }$	hat gof =	= f			
13.	The nu	mber of real root	s of the	equation e^{6x} – e^4	$4x - 2e^{3x}$	$x^{-1}2e^{2x} + e^{x} + 1$	= 0 is:		
	(A)	4	(B)	1	(C)	6	(D)	2	
14.	Let [x]	denotes the gre	atest int	eger ≤ x, where	$x\in R\;.$	If the domain of	the real	valued function	
	f(x) =	$\sqrt{\frac{\left[x\right]-2}{\left[x\right]-3}}$ is $\left(-\infty\right)$	\circ , $a)\cup [b$	$(c) \cup [4, \infty), a < b$	< c , the	en the value of a	+b+c	is:	
		\[x] -3							
	(A)	1	(B)	-3	(C)	-2	(D)	8	
15.	Let f:	$R - \left\{ \frac{\alpha}{6} \right\} \to R$ be	defined	by $f(x) = \frac{5x + 6x - 6x}{6x - 6x}$	$\frac{3}{\alpha}$. Then	the value of α	for whi	ch $(f \circ f)(x) = x$, for all	
	<i>x</i> ∈ <i>R</i> -	$-\left\{\frac{\alpha}{6}\right\}$, is:							
	(A)	5	(B)	8	(C)	6	(D)	No such α exists	
16.	Let f:	$N \to N$ be a func	tion such	that $f(m+n) = 1$	f(m) + f(n)	n) for every m, n	$\in N$. If	f(6) = 18, then	
	Let $f: N \to N$ be a function such that $f(m+n) = f(m) + f(n)$ for every $m, n \in N$. If $f(6) = 18$, then $f(2) \cdot f(3)$ is equal to:								
	(A)	6	(B)	54	(C)	18	(D)	36	
17.	If A =	$[x \in \mathbf{R} : x-2 > 1]$	$B = \{x\}$	$\in \mathbf{R} : \sqrt{x^2 - 3} > 1$	$C = \{x \in \mathcal{X} \mid x \in \mathcal{X} \in \mathcal{X} \}$	$\in \mathbf{R} : x - 4 \ge 2$	and Z is	s the set of all integers,	
	then the number of subsets of the set $(A \cap B \cap C)^c \cap Z$ is								
18.	The do	main of the funct	tion cose	$ec^{-1}\left(\frac{1+x}{x}\right)$ is:					
	(A)	$\left(-\frac{1}{2}, \infty\right) - \{0\}$			(B)	$\left[-\frac{1}{2}, 0\right] \cup \left[1, \infty\right)$			
	(C)	$\left(-1,-\frac{1}{2}\right]\cup(0,\infty)$)		(D)	$\left[-\frac{1}{2}, \infty\right] - \{0\}$			
19.	The rar	nge of the functio	on f(x) =	$= \log_{\sqrt{5}} \left(3 + \cos\left(\frac{1}{2}\right) \right)$	$\left(\frac{3\pi}{4} + X\right) +$	$-\cos\left(\frac{\pi}{4} + X\right) + \cos\left(\frac{\pi}{4} + X\right)$	$S\left(\frac{\pi}{4}-X\right)$	$-\cos\left(\frac{3\pi}{4}-x\right)$ is:	
	(A)	$\left[\frac{1}{\sqrt{5}},\sqrt{5}\right]$	(B)	[0, 2]	(C)	[–2, 2]	(D)	(0, √5)	

Functions Class - XII | Mathematics

JEE Main 2022

The number of functions f, from the set $A = \left\{ x \in \mathbb{N} : x^2 - 10x + 9 \le 0 \right\}$ to the set $B = \left\{ n^2 : n \in \mathbb{N} \right\}$ such 1. that $f(x) \le (x-3)^2 + 1$, for every $x \in A$, is _____

The domain of the function $f(x) = \sin^{-1}\left[2x^2 - 3\right] + \log_2\left[\log_{\frac{1}{2}}\left(x^2 - 5x + 5\right)\right]$, where [t] is the greatest 2. integer functions, is:

$$(A) \qquad \left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)$$

(B)
$$\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)$$

(C)
$$\left(1, \frac{5 - \sqrt{5}}{2}\right)$$

(D)
$$\left(1, \frac{5+\sqrt{5}}{2}\right)$$

3. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{3, 6, 7, 9\}$. Then the number of elements in the set $\{C \subseteq A : C \cap B \neq \emptyset\}$

Let $S = \{4,6,9\}$ and $T = \{9,10,11,...,1000\}$. If $A = \{a_1 + a_2 + ... + a_k : k \in N, a_1, a_2, a_3, ..., a_k \in S\}$, then the 4. sum of all the elements in the set T – A is equal to_____

5. Let R be a relation from the set $\{1,2,3,...,60\}$ to itself such that $R = \{(a,b): b = pq, where p,q \ge 3 \text{ are } \{a,b\}: b = pq, where p,q \ge 3 \text{$ prime numbers}. Then, the number of elements in R is:

The domain of the function $f(x) = \sin^{-1}\left(\frac{x^2 - 3x + 2}{x^2 + 2x + 7}\right)$ is: 6.

$$\begin{bmatrix} -1,2 \end{bmatrix}$$
 (C) $\begin{bmatrix} -1,\infty \end{pmatrix}$ (D) $\begin{pmatrix} -\infty,2 \end{bmatrix}$

The number of elements in the set $S = \left\{ x \in \mathbb{R} : 2\cos\left(\frac{x^2 + x}{6}\right) = 4^x + 4^{-x} \right\}$ is: 7.

Let x, y > 0. If $x^3y^2 = 2^{15}$, then the least value of 3x + 2y is: 8.

 $\frac{\sin(x-[x])}{x-[x]}$, $x \in (-2, -1)$ Let $f(x) = \{ \max\{2x, 3[|x|] \} , |x| < 1 \}$ 9.

> where [t] denotes greatest integer $\leq t$. If m is the number of points where f is not continuous and n is the number of points where f is not differentiable, then the ordered pair (m, n) is:

- Let $S = \left\{ \begin{pmatrix} -1 & a \\ 0 & b \end{pmatrix}; a, b \in \{1, 2, 3, 100\} \right\}$ and let $T_n = \{A \in S : A^{n(n+1)} = I\}$. Then the number of elements 10. in $\bigcap_{n=1}^{\infty} T_n$ is _____.
- The domain of the function $f(x) = \frac{\cos^{-1}\left(\frac{x^2 5x + 6}{x^2 9}\right)}{\ln(x^2 3x + 2)}$ is: 11.
 - (A)

(B)

 $\left[-\frac{1}{2},1\right]\cup(2,\infty)$

- **(D)** $\left[-\frac{1}{2}, 1\right] \cup (2, \infty) \left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$
- The number of one-one functions $f:(a, b, c, d) \rightarrow \{0, 1, 2, \dots, 10\}$ such that 12. 2 f(a) - f(b) + 3 f(c) + f(d) = 0 is ____
- Let $\max_{0 \le x \le 2} \left\{ \frac{9 x^2}{5 x} \right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{ \frac{9 x^2}{5 x} \right\} = \beta$ 13.

If $\int_{0}^{2\alpha-1} Max \left\{ \frac{9-x^2}{5-x}, x \right\} dx = \alpha_1 + \alpha_2 \log_e \left(\frac{8}{15} \right)$, then $\alpha_1 + \alpha_2$ is equal to ______

- Let $A = \left\{ x \in R : \left| x + 1 \right| < 2 \right\}$ and $B = \left\{ x \in R : \left| x 1 \right| \ge 2 \right\}$. Then which one of the following statements is 14. NOT true?
 - A B = (-1,1)(A)

(B) B-A=R-(-3,1)

 $A \cap B = (-3, -1]$

- **(D)** $A \cup B = R [1, 3]$
- 15. Let $f: N \to R$ be a function such that f(x+y)=2f(x)f(y) for natural numbers x and y. If f(1)=2, then the value of α for which $\sum_{k=-1}^{10} f(\alpha+k) = \frac{512}{3} (2^{20} - 1)$ holds, is:
 - (A)

- (D)
- Let $f: R \to R$ be defined as $f(x) = x^3 + x 5$. If g(x) is a function such that f(g(x)) = x, $\forall x \in R$ 16. then g'(63) is equal to

- (C) $\frac{43}{49}$ (D) $\frac{91}{49}$
- Let $f:R\to R$ and $g:R\to R$ be two functions defined by $f(x)=\log_e(x^2+1)-e^{-x}+1$ and $g(x)=\frac{1-2e^{2x}}{a^x}$. 17.

Then, for which of the following range of α , the inequality $f\left(g\left(\frac{(\alpha-1)^2}{3}\right)\right) > f\left(g\left(\alpha-\frac{5}{3}\right)\right)$ holds?

- (A) (2, 3)
- (B)
- (-2, -1) **(C)** (1, 2)
- $f: R \to R$ be a function defined by $f(x) = \left(2\left(1 \frac{x^{25}}{2}\right)(2 + x^{25})\right)^{\frac{50}{50}}$. If the function 18. g(x) = f(f(f(x))) + f(f(x)), then the greatest integer less than or equal to g(1) is_

- Let $f: R \to R$ be defined as f(x) = x 1 and $g: R \{1, -1\} \to R$ be defined as $g(x) = \frac{x^2}{\sqrt{2} 1}$. Then the 19. function fog is:
 - (A) one-one but not onto

- (B) onto but not one-one
- (C) both one-one and onto
- (D) neither one-one nor onto
- Let $f: R \to R$ satisfies $f(x+y) = 2^x f(y) + 4^y f(x)$, $\forall x, y \in R$. If f(2) = 3, then $14 \cdot \frac{f'(4)}{f'(2)}$ is equal 20.
- Let $f(x) = \frac{x-1}{x+1}$, $x \in R \{0, -1, 1\}$. If $f^{n+1}(x) = f(f^n(x))$ for all $n \in N$, then $f^0(6) + f^0(7)$ is equal to: 21.

- (A) $\frac{7}{6}$ (B) $-\frac{3}{2}$ (C) $\frac{7}{12}$ (D) $-\frac{11}{12}$
- Lert $f,g:R\to R$ be two real valued functions defined as $f(x)=\begin{cases} -\mid x+3\mid &, & x<0\\ e^x &, & x\geq 0 \end{cases}$ and 22.
 - $g(x) = \begin{cases} x^2 + k_1 x &, & x < 0 \\ 4x + k_2 &, & x \ge 0 \end{cases}$, where k_1 and k_2 are real constants. If (gof) is differentiable at x = 0, then (gof)
 - (-4) + (gof) (4) is equal to:
 - (A) $4(e^4 + 1)$ (B) $2(2e^4 + 1)$ (C) $4e^4$
- (D)

- Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Define $f : S \to S$ as 23.
 - $f(n) = \begin{cases} 2n, & \text{if } n = 1, 2, 3, 4, 5 \\ 2n 11, & \text{if } n = 6, 7, 8, 9, 10 \end{cases}$
 - Let $g: S \to S$ be a function such that $fog(n) = \begin{cases} n+1, & \text{if } n \text{ is odd} \\ n-1, & \text{if } n \text{ is even} \end{cases}$
 - Then g(10)(g(1)+g(2)+g(3)+g(4)+g(5)) is equal to ______
- Let $f: R \to R$ be a function defined by $f(x) = \frac{2e^{2x}}{e^{2x} + e^{2x}}$. 24.

Then
$$f\left(\frac{1}{100}\right) + f\left(\frac{2}{100}\right) + f\left(\frac{3}{100}\right) + \dots + f\left(\frac{99}{100}\right)$$
 is equal to ____.

- Let $R_1 = \{(a,b) \in N \times N : |a-b| \le 13\}$ and $R_2 = \{(a,b) \in N \times N : |a-b| \ne 13\}$. Then on $N : |a-b| \ne 13\}$. 25.
 - Both R_1 and R_2 are equivalence relations (A)
 - Neither R_1 nor R_2 is an equivalence relation
 - R_1 is an equivalence relation but R_2 is not
 - R_1 is an equivalence relation but R_1 is not
- 26. Let $S = \{1, 2, 3, 4\}$. Then the number of elements in the set $\{f: S \times S \rightarrow S: f \text{ is onto } \}$ and $f(a,b) = f(b,a) \ge a \forall (a,b) \in S \times S$ is _____
- Let a function $f: N \to N$ be defined by $f(n) = \begin{cases} 2n, & n = 2, 4, 6, 8, \\ n-1, & n = 3, 7, 11, 15, ... \end{cases}$ then, f is: $\frac{n+1}{2}$, n = 1, 5, 9, 13, ...27.
 - (A) one-one but not onto

- (B) onto but not one-one
- (C) neither one-one nor onto
- (D) one-one and onto

Let R_1 and R_2 be relations on the set {1, 2, ... 50} such that 28.

$$R_1 = \left\{ \left(p, p^n \right) : p \text{ is a prime and } n \ge 0 \text{ is an integer} \right\}$$
 and

$$R_2 = \left\{ \left(p, p^n \right) : p \text{ is a prime and } n = 0 \text{ or } 1 \right\}.$$

Then, the number of elements in $R_1 - R_2$ is _____.

- Let $A = \{1, a_1, a_2, \dots, a_{18}, 77\}$ be a set of integers with $1 < a_1 < a_2 < \dots < a_{18} < 77$. 29. Let the set $A + A = \{x + y : x, y \in A\}$ contain exactly 39 elements. Then, the value of $a_1 + a_2 + ... + a_{18}$ is equal to ____
- Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If $f(g(x)) = 8x^2 2x$, and 30. $g(f(x)) = 4x^2 + 6x + 1$, then the value of f(2) + g(2) is _____.
- Let a set $A=A_1\cup A_2\cup...\cup A_k$, where $A_j\cap A_j=\emptyset$ for $i\neq j$, $1\leq i,j\leq k$. Define the relation R from A to 31. A by $R = \{(x,y) : y \in A_i \text{ if and only if } x \in A_i, 1 \le i \le k \}$. Then, R is:
 - (A) Reflexive, symmetric but not transitive
 - (B) Reflexive, transitive but not symmetric
 - (C) Reflexive but not symmetric and transitive
 - (D) An equivalence relation
- The domain of the function $\cos^{-1} \left(\frac{2\sin^{-1} \left(\frac{1}{4x^2 1} \right)}{\pi} \right)$ is: 32.

(A)
$$R - \left\{ -\frac{1}{2}, \frac{1}{2} \right\}$$

(B)
$$\left(-\infty, -1\right] \cup \left[\frac{1}{2}, \infty\right] \cup \left\{0\right\}$$

(C)
$$\left(-\infty, \frac{-1}{2}\right) \cup \left(\frac{1}{2}, \infty\right) \cup \left\{0\right\}$$

(A)
$$R - \left\{ -\frac{1}{2}, \frac{1}{2} \right\}$$
 (B) $\left(-\infty, -1 \right] \cup \left[\frac{1}{2}, \infty \right] \cup \left\{ 0 \right\}$ (C) $\left(-\infty, \frac{-1}{2} \right) \cup \left(\frac{1}{2}, \infty \right) \cup \left\{ 0 \right\}$ (D) $\left(-\infty, \frac{-1}{\sqrt{2}} \right) \cup \left(\frac{1}{\sqrt{2}}, \infty \right) \cup \left\{ 0 \right\}$

Let $c,k\in R$. If $f(x)=(c+1)x^2+(1-c^2)x+2k$ and f(x+y)=f(x)+f(y)-xy, for all $x,y\in R$, then the 33. value of 2(f(1)+f(2)+f(3)+....+f(20)) is equal to _____

Differential Calculus-1

Class - XII | Mathematics

JEE Main 2021

If $f: R \to R$ is a function defined by $f(x) = [x-1] \cos\left(\frac{2x-1}{2}\right)\pi$, where [-] denotes the greatest integer 1.

(A) discontinuous at all integral values of x except at x = 1

(B) continuous only at x = 1

(C) continuous for every real x

(D) discontinuous only at x = 1

 $\lim_{x\to 0} \frac{\int_{0}^{x^2} \left(\sin \sqrt{t}\right) dt}{x^3}$ is equal to: (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ 2.

function, then *f* is:

 $\lim_{n\to\infty} \left(1 + \frac{1+\frac{1}{2} + \dots + \frac{1}{n}}{n^2} \right)''$ is equal to: 3.

(A)

The number of points, at which the function $f(x) = |2x+1|-3|x+2|+|x^2+x-2|$, $x \in R$ is not 4. differentiable, is _____.

A function f is defined on [-3, 3] as $f(x) = \begin{cases} \min\{|x|, 2 - x^2\} &, -2 \le x \le 2 \\ [|x|] &, 2 < |x| \le 3 \end{cases}$ where [x] denotes the 5. greatest integer $\leq x$. The number of points, where f is not differentiable in (-3, 3) is _____

If $\lim_{x\to 0} \frac{ax - (e^{4x} - 1)}{ax(e^{4x} - 1)}$ exists and is equal to b, then the value of a - 2b is ______. 6.

Let f be any function defined on R and let it satisfy the condition: 7.

$$| f(x) - f(y) | \le |(x - y)^{2}|, \forall (x, y) \in R$$

If f(0) = 1, then:

(A) $f(x) = 0, \forall x \in R$ (B)

f(x) can take any value in R

 $f(x) > 0, \forall x \in R$

 $f(x) < 0, \forall x \in R$

The value of $\lim_{h\to 0} 2\left\{\frac{\sqrt{3}\sin\left(\frac{\pi}{6}+h\right)-\cos\left(\frac{\pi}{6}+h\right)}{\sqrt{3}h(\sqrt{3}\cos h-\sin h)}\right\}$ is :

(A) $\frac{2}{\sqrt{3}}$ (B) $\frac{2}{\sqrt{2}}$ (C) 8.

			$\int 2\sin\left(-\frac{\pi x}{2}\right),$	if $x < -1$
9.	Let $f: R \to R$ be defined as	f(x) =	$ ax^2 + x + b $,	if $-1 \le x \le 1$
			$SIII(\pi x)$,	II X > I

If f(x) is continuous on R, then a+b equals:

- **(B)** -1
- (C)
- Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\lim_{x \to a} \frac{xf(a) af(x)}{x a}$ 10. equals:
 - (A)
- (C)
- (D) 4 - 2a
- The value of $\lim_{n\to\infty} \frac{[r]+[2r]+...+[nr]}{n^2}$, where r is a non-zero number and [r] denotes the greatest integer 11. than or equal to r, is equal to :
 - (A) 2r
- (C)

- The value of the limit $\lim_{\theta \to 0} \frac{\tan(\pi \cos^2 \theta)}{\sin(2\pi \sin^2 \theta)}$ is equal to : 12.
- **(B)** $-\frac{1}{4}$ **(C)** $-\frac{1}{2}$

- If $f(x) = \begin{cases} \frac{1}{|x|} & \text{if } |x| \ge 1 \\ \frac{1}{|x|} & \text{otherwise} \end{cases}$ is differentiable at every point of the domain, then the values of a and b are 13.

respectively:

- **(B)** $\frac{1}{2}$, $-\frac{3}{2}$ **(C)** $-\frac{1}{2}$, $\frac{3}{2}$ **(D)** $\frac{5}{2}$, $-\frac{3}{2}$
- 14. Let $f: S \to S$ where $S = (0, \infty)$ be a twice differentiable function such that f(x+1) = xf(x). If $g: S \to R$ be defined as $g(x) = \log_e f(x)$, then the value of |g''(5) - g''(1)| is equal to :
 - (A)

- If the function $f(x) = \frac{\cos(\sin x) \cos x}{x^4}$ is continuous at each point in its domain and $f(0) = \frac{1}{k}$, then k15.
- The value of $\lim_{x \to 0^+} \frac{\cos^{-1}(x [x]^2) \cdot \sin^{-1}(x [x]^2)}{x x^3}$, where [x] denotes the greatest integer $\le x$ is:

 (A) π (B) $\frac{\pi}{4}$ (C) 0 (D) $\frac{\pi}{2}$ 16.

- Let $f: R \to R$ be a function defined as $f(x) = \begin{cases} \frac{\sin(a+1) x + \sin 2x}{2x} &, & \text{if } x < 0 \\ \frac{b}{\sqrt{x + bx^3} \sqrt{x}} &, & \text{if } x > 0 \end{cases}$ 17.

If f is continuous at x = 0, then the value of a + b is equal to:

- **(C)** –2
- (D)
- Let $f: R \to R$ satisfy the equation $f(x+y) = f(x) \cdot f(y)$ for all $x, y \in R$ and $f(x) \neq 0$ for any $x \in R$. If the 18. function f is differentiable at x = 0 and f'(0) = 3, then $\lim_{h \to 0} \frac{1}{h} (f(h-1))$ is equal to:

19. Let the functions $f: R \to R$ and $g: R \to R$ be defined as :

$$f(x) = \begin{cases} x+2, & x < 0 \\ x^2, & x \ge 0 \end{cases} \text{ and } g(x) = \begin{cases} x^3, & x < 1 \\ 3x - 1, & x \ge 1 \end{cases}$$

Then, the number of points in R where (fog)(x) is NOT differentiable is equal to:

- (A) 0 (B) 3 (C) 2 If $\lim_{x\to 0} \frac{ae^x b\cos x + ce^{-x}}{x\sin x} = 2$, then a+b+c is equal to _____. 20.
- 21. Let $f:[0,\infty)\to[0,3]$ be a function defined by

$$f(x) = \begin{cases} \max \{ \sin t : 0 \le t \le x \}, & 0 \le x \le \pi \\ 2 + \cos x, & x > \pi \end{cases}$$

Then which of the following is true?

- (A) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$
- (B) f is not continuous exactly at two points in $(0, \infty)$
- (C) f is differentiable everywhere in $(0, \infty)$
- (D) f is continuous everywhere but not differentiable exactly at one point in $(0,\infty)$
- The value of $\lim_{x\to 0} \left(\frac{x}{\sqrt[8]{1-\sin x} \sqrt[8]{1+\sin x}} \right)$ is equal to : 22.
 - (A)

- (D)
- 23. Let $f:[0,3] \to R$ be defined by $f(x) = \min\{x-[x], 1+[x]-x\}$ where [x] is the greater integer less than

Let P denote the set containing all $x \in [0, 3]$ where f is discontinuous, and Q denote the set containing all $x \in (0, 3)$ where f is not differentiable. Then the sum of number of elements in P and Q is equal to

- Let $f: R \to R$ be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\lim_{x \to 2} \frac{x^2 f(2) 4 f(x)}{y 2}$ is 24. equal to:
 - **(A)** 12

- Let $f: \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \to R$ be defined as $f(x) = \begin{cases} \frac{3a}{\left(1 + \left| \sin x \right| \right)^{\left|\sin x\right|}}, & -\frac{\pi}{4} < x < 0 \\ b, & x = 0 \end{cases}$. If f is continuous at x = 0, $e^{\cot 4x/\cot 2x}$, $0 < x < \frac{\pi}{4}$ 25.

then the value of $6x + b^2$ is equal to :

- (C) 1+e (D)

Consider the function $f(x) = \frac{P(x)}{\sin(x-2)}, x \neq 2$ 26.

> Where P(x) is a polynomial such that P''(x) is always a constant and P(3) = 9. If f(x) is continuous at x = 2, then P(5) is equal to _

Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined as $f(x) = \begin{cases} 3\left(1 - \frac{|x|}{2}\right) & \text{if } |x| \le 2\\ 0 & \text{if } |x| > 2 \end{cases}$ 27.

> Let $g: \mathbb{R} \to \mathbb{R}$ be given by g(x) = f(x+2) - f(x-2). If n and m denote the number of points in \mathbb{R} where g is not continuous and not differentiable, respectively, then n + m is equal to _____

28. Let
$$f: R \to R$$
 be defined as $f(x) = \begin{cases} \frac{x^3}{(1 - \cos 2x)^2} & \log_e \left(\frac{1 + 2xe^{-2x}}{(1 - xe^{-x})^2} \right), & x \neq 0 \\ \alpha, & x = 0 \end{cases}$. If f is continuous at $x = 0$,

then α is equal to:

29. If
$$\lim_{x\to 0} \frac{\alpha x e^x - \beta \log_e(1+x) + \gamma x^2 e^{-x}}{x \sin^2 x} = 10$$
, α , β , $\gamma \in R$, then the value of $\alpha + \beta + \gamma + is$ ______.

30. Let a function
$$f: R \to R$$
 be defined as $f(x) = \begin{cases} \sin x - e^x & \text{if } x \le 0 \\ a + [-x] & \text{if } 0 < x < 1 \\ 2x - b & \text{if } x \ge 1 \end{cases}$

Where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a+b) is equal

- (A)

31. If the value of
$$\lim_{x\to 0} \left(2-\cos x\sqrt{\cos 2x}\right) \left(\frac{x+2}{x^2}\right)$$
 is equal to e^a , then a is equal to _____.

32. If
$$\alpha = \lim_{x \to \pi/4} \frac{\tan^3 x - \tan x}{\cos\left(x + \frac{\pi}{4}\right)}$$
 and $\beta = \lim_{x \to 0} (\cos x)^{\cot x}$ are the roots of the equation $ax^2 + bx - 4 = 0$, then the

ordered pair (a, b) is:

- (A)
- (1, 3)
 - **(C)** (-1, 3)

33. If
$$\alpha, \beta$$
 are the distinct roots of $x^2 + bx + c = 0$, then $\lim_{x \to \beta} \frac{e^{2(x^2 + bx + c)} - 1 - 2(x^2 + bx + c)}{(x - \beta)^2}$ is equal to :

(A)
$$b^2 + 4c$$

(B)
$$b^2 - 4$$

(C)
$$2(b^2 + 4c)$$
 (D) $2(b^2 - 4c)$

2(
$$b^2 - 4c^2$$
)

34. Let
$$[t]$$
 denote the greatest integer less than or equal to t .

Let f(x) = x - [x], g(x) = 1 - x + [x], and $h(x) = \min\{f(x), g(x)\}, x \in [-2, 2]$.

Then h is:

- (A) Continuous in [-2, 2] but not differentiable at exactly three points in (-2, 2)
- (B) Not continuous at exactly four points in [-2, 2]
- (C) Not continuous at exactly three points in [-2, 2]
- (D) Continuous in [-2, 2] but not differentiable at more than four points in (-2, 2)

35. Let
$$a, b \in R, b \neq 0$$
. Define a function $f(x) = \begin{cases} a \sin \frac{\pi}{2}(x-1), & \text{for } x \leq 0 \\ \frac{\tan 2x - \sin 2x}{bx^3}, & \text{for } x > 0 \end{cases}$.

If f is continuous at x = 0, then 10 - ab is equal to ___

36. Let
$$f(x) = x^6 + 2x^4 + x^3 + 2x + 3$$
, $x \in \mathbb{R}$. Then the natural number n for which

$$\lim_{x \to 1} \frac{x^n f(1) - f(x)}{x - 1} = 44 \text{ is:}$$

37. Let [t] denote the greatest integer $\leq t$. The number of points where the function

 $f(x) = [x] | x^2 - 1 | + \sin\left(\frac{\pi}{[x] + 3}\right) - [x + 1], x \in (-2, 2) \text{ is continuous is:}$

- Let $f: R \to R$ be a continuous function. Then $\lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\sec^2 x} f(x) dx}{x^2 \frac{\pi^2}{4}}$ is equal to: 38.
 - $2 f(\sqrt{2})$ (A) (C) 4 f(2) (B) 2f(2)(D) f(2)
- The function $f(x) = x^3 6x^2 + ax + b$ is such that f(2) = f(4) = 0. Consider two statements, (S1) there 39. exists $x_1, x_2 \in (2,4), x_1 < x_2$, such that $f'(x_1) = -1$ and $f'(x_2) = 0$. (S2) there exists
 - $x_3, \, x_4 \in (2, \, 4), \, x_3 < x_4, \, \text{such that} \, f \, \text{is decreasing in} \, \, (2, \, x_4), \, \text{increasing in} \, \, (x_4, \, 4) \, \text{and} \, \, 2 \, f'(x_3) = \sqrt{3} \, f(x_4) \, .$ Both (S1) and (S2) are false

Both (S1) and (S2) are true

- (D) (C) (S1) is false and (S2) is true (S1) is true and (S2) is false
- If 'R' is the least value of 'a' such that the function $f(x) = x^2 + ax + 1$ is increasing on [1, 2] and 'S' is the 40. greatest value of 'a' such that the function $f(x) = x^2 + ax + 1$ is decreasing on [1, 2], then the value of
- $\lim_{x\to 0} \frac{\sin^2(\pi\cos^4 x)}{x^4}$ is equal to: 41.
 - $4\pi^2$ (A) (C) (D) $2\pi^2$
- If the function $f(x) = \begin{cases} \frac{1}{x} \log_e \left(\frac{1 + \frac{x}{a}}{2} \right) & , & x < 0 \\ k & , & x = 0 \\ \frac{\cos^2 x \sin^2 x 1}{\sqrt{x^2 + 1} 1} & , & x > 0 \end{cases}$ 42.

is continuous at x = 0, then $\frac{1}{a} + \frac{1}{b} + \frac{4}{k}$ is equal to:

- (A) (C) (D) -5
- If $\lim_{x\to\infty} \left(\sqrt{x^2 x + 1} ax \right) = b$, then the ordered pair (a, b) is:
 - (A) $\left(-1, -\frac{1}{2}\right)$ (B) $\left(-1, \frac{1}{2}\right)$ (C) $\left(1, \frac{1}{2}\right)$ (D) $\left(1, -\frac{1}{2}\right)$
- **44.** If $y(x) = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} \sqrt{1-\sin x}}\right)$, $x \in \left(\frac{\pi}{2}, \pi\right)$, then $\frac{dy}{dx}$ at $x = \frac{5\pi}{6}$ is:
 - (A) $\frac{1}{2}$ (C) (D) -1

- **45.** Let $f: R \to R$ and $g: R \to R$ be defined as $f(x) = \begin{cases} x+a, & x < 0 \\ |x-1|, & x \ge 0 \end{cases}$ and $g(x) = \begin{cases} x+1, & x < 0 \\ (x-1)^2 + b, & x \ge 0 \end{cases}$ where a, b are non-negative real numbers. If (gof)(x) is continuous for all $x \in R$, then a+b is equal to _______.
- **46.** If $f(x) = \sin\left(\cos^{-1}\left(\frac{1-2^{2x}}{1+2^{2x}}\right)\right)$ and its first derivative with respect to x is $-\frac{b}{a}\log_e 2$ when x = 1, where a and b are integers, then the minimum value of $|a^2 b^2|$ is ______.
- 47. If $f(x) = \begin{cases} \int_{0}^{x} (5 + |1 t|), & x > 2 \\ 5x + 1, & x \le 2 \end{cases}$, then:
 - (A) f(x) is not continuous at x = 2
 - **(B)** f(x) is everywhere differentiable
 - (C) f(x) is continuous but not differentiable at x = 2
 - **(D)** f(x) is not differentiable at x = 1
- **48.** If $y^{1/4} + y^{-1/4} = 2x$, and $(x^2 1)\frac{d^2y}{dx^2} + \alpha x \frac{dy}{dx} + \beta y = 0$, then $|\alpha \beta|$ is equal to _____.
- 49. If $\lim_{x\to 0} \frac{\sin^{-1}x \tan^{-1}x}{3x^3}$ is equal to L, then the value of (6L + 1) is:
 - **(A)** $\frac{1}{2}$
- (B)
- C)
- (D) -
- **50.** The function $f(x) = |x^2 2x 3| \cdot e^{|9x^2 12x + 4|}$ is not differentiable at exactly:
 - (A) one point
- (B) three points
- (C) four points
- (D) two points
- **51.** If y = y(x) is an implicit function of x such that $\log_e(x + y) = 4xy$, then $\frac{d^2y}{dx^2}$ at x = 0 is equal to

Differential Calculus-1

Class - XII | Mathematics

JEE Main 2022

1 . If	$a = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{2n}{n^2 + k^2}$ and	$f\left(x\right) = \sqrt{\frac{1 - \cos x}{1 + \cos x}}, x \in \left(0, 1\right),$	then
---------------	---	--	------

(A)
$$2\sqrt{2} f\left(\frac{a}{2}\right) = f'\left(\frac{a}{2}\right)$$

(B)
$$f\left(\frac{a}{2}\right)f'\left(\frac{a}{2}\right) = \sqrt{2}$$

(C)
$$\sqrt{2} f\left(\frac{a}{2}\right) = f'\left(\frac{a}{2}\right)$$

(D)
$$f\left(\frac{a}{2}\right) = \sqrt{2} f'\left(\frac{a}{2}\right)$$

2. If the function
$$f(x) = \begin{cases} \frac{\log_e \left(1 - x + x^2\right) + \log_e \left(1 + x + x^2\right)}{\sec x - \cos x}, & x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) - \left\{0\right\} \text{ is continuous at } x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) - \left\{0\right\} \end{cases}$$

x = 0, then k is equal to:

(A) 1 (B) -1 (C) e (D) 0
3. If
$$f(x) = \begin{cases} x+a, & x \le 0 \\ |x-4|, & x > 0 \end{cases}$$
 and $g(x) = \begin{cases} x+1, & x < 0 \\ (x-4)^2 + b, & x \ge 0 \end{cases}$ are continuous on R , then

 $(g \ of)(2) + (fog)(-2)$ is equal to:

4. Let
$$f: R \to R$$
 be a continuous function such that $f(3x) - f(x) = x$. If $f(8) = 7$, then $f(14)$ is equal to:

5. If for
$$p \neq q \neq 0$$
, the function $f(x) = \frac{\sqrt[7]{p(729 + x)} - 3}{\sqrt[3]{729 + qx} - 9}$ is continuous at $x = 0$, then:

(A)
$$7 pqf(0) - 1 = 0$$

(B)
$$63q f(0) - p^2 = 0$$

(C)
$$21q f(0) - p^2 = 0$$

(D)
$$7pq \ f(0) - 9 = 0$$

6. Let
$$\beta = \lim_{x \to 0} \frac{\alpha x - (e^{3x} - 1)}{\alpha x (e^{3x} - 1)}$$
 for some $\alpha \in R$. Then the value of $\alpha + \beta$ is:

(A)
$$\frac{14}{5}$$

(D)
$$\frac{7}{2}$$

7. The value of
$$\log_e 2 \frac{d}{dx} (\log_{\cos x} \csc x)$$
 at $x = \frac{\pi}{4}$ is:

(A)
$$-2\sqrt{2}$$

8. The number of points, where the function
$$f: R \to R$$
,

$$f(x) = |x-1|\cos|x-2|\sin|x-1|+(x-3)|x^2-5x+4|$$
, is **NOT** differentiable, is:

	Vidyamandir Classes: Innovating For Your Success
9.	If $\lim_{x\to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}$, where $\alpha, \beta, \gamma \in R$, then which of the following is NOT correct?
	(A) $\alpha^2 + \beta^2 + \gamma^2 = 6$ (B) $\alpha\beta + \beta\gamma + \gamma\alpha + 1 = 0$
	(C) $\alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 + 3 = 0$ (D) $\alpha^2 - \beta^2 + \gamma^2 = 4$
10.	If $[t]$ denotes the greatest integer $\leq t$, then the number of points, at which the function
	$f(x) = 4 2x+3 +9\left[x+\frac{1}{2}\right]-12\left[x+20\right]$ is not differentiable in the open interval $(-20,20)$, is
11.	The number of points where the function
	$ 2x^2 - 3x - 7 $ if $x \le -1$
	$f(x) = \begin{cases} 2x^2 - 3x - 7 & \text{if } x \le -1 \\ [4x^2 - 1] & \text{if } -1 < x < 1 \\ x + 1 + x - 2 & \text{if } x \ge 1 \end{cases}$
	[t] denotes the greatest integer $\leq t$, is discontinuous is
12.	$\lim_{x \to \frac{\pi}{2}} \left(\tan^2 x \left(\left(2 \sin^2 x + 3 \sin x + 4 \right)^{\frac{1}{2}} - \left(\sin^2 x + 6 \sin x + 2 \right)^{\frac{1}{2}} \right) \right) \text{ is equal to:}$
	(A) $\frac{1}{12}$ (B) $-\frac{1}{18}$ (C) $-\frac{1}{12}$ (D) $\frac{1}{6}$
13.	Let $f(x) = \begin{bmatrix} 2x^2 + 1 \end{bmatrix}$ and $g(x) = \begin{cases} 2x - 3, & x < 0 \\ 2x + 3, & x \ge 0 \end{cases}$ where $[t]$ is the greatest integer $\le t$. Then, in the
	open interval (-1,1), the number of points where <i>fog</i> is discontinuous is equal to
14.	Let $f(x)$ be a polynomial function such that $f(x) + f'(x) + f''(x) = x^5 + 64$. Then, the value of $\lim_{x \to 1} \frac{f(x)}{x - 1}$
	is equal to:
	(A) -15 (B) -60 (C) 60 (D) 15
15.	Let $f(x) = \min\{1, 1 + x \sin x\}$, $0 \le x \le 2\pi$. If m is the number of points, where f is not differential and n is the number of points, where f is not continuous, then the ordered pair (m, n) is equal to:
	(A) (2,0) (B) (1,0) (C) (1,1) (D) (2,1)
16.	Let [t] denote the greatest integer $\leq t$ and $\{t\}$ denote the fractional part of t. The integer value of a for
	which the left hand limit of the function $f(x) = [1+x] + \frac{\alpha^2[x] + \{x\} + [x] - 1}{2[x] + \{x\}}$ at $x = 0$ is equal to $\alpha - \frac{4}{3}$,
17	is Let $f,g:R \to R$ be functions defined by
17.	$f(x) = \begin{cases} \begin{bmatrix} x \\ \end{bmatrix}, & x < 0 \\ 1 - x , & x \ge 0 \end{cases} \text{ and } g(x) = \begin{cases} e^x - x, & x < 0 \\ (x - 1)^2 - 1, & x \ge 0 \end{cases}$
	$\left(\begin{vmatrix} 1-x \end{vmatrix} , x \ge 0 \right) \left(\left(x-1 \right)^2 - 1 , x \ge 0 \right)$
	Where $[x]$ denote the greatest integer less than or equal to x . Then, the function fog is discontinuous at exactly.
	(A) One point (B) two points (C) three points (D) four points
18.	Let $f: R \to R$ be a differentiable function such that $f\left(\frac{\pi}{4}\right) = \sqrt{2}$, $f\left(\frac{\pi}{2}\right) = 0$ and $f'\left(\frac{\pi}{2}\right) = 1$ and let
	$g(x) = \int_{X}^{\pi/4} (f'(t) \sec t + \tan t \sec t \ f(t)) dt \text{ for } x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]. \text{ Then } \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x) \text{ is equal to:}$
	(A) 2 (B) 3 (C) 4 (D) -3

19. If
$$\lim_{x \to 1} \frac{\sin(3x^2 - 4x + 1) - x^2 + 1}{2x^3 - 7x^2 + ax + b} = -2$$
, then the value of $(a - b)$ is equal to ______

Let $f: R \to R$ be defined as 20.

$$f(x) = \begin{bmatrix} e^{x}, & x < 0 \\ ae^{x} + [x - 1], & 0 \le x < 1 \\ b + [\sin(\pi x)], & 1 \le x < 2 \\ e^{-x} - c, & x \ge 2 \end{bmatrix}$$

Where $a, b, c \in \mathbb{R}$ and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?

- (A) There exists $a, b, c \in R$ such that f is continuous on R.
- (B) If f is discontinuous at exactly one point, then a+b+c=1
- If f is discontinuous at exactly one point, then $a+b+c\neq 1$ (C)
- (D) f is discontinuous atleast two points, for any values of a, b and c.
- The value of $\lim_{x\to 1} \frac{(x^2-1)\sin^2(\pi x)}{x^4-2x^3+2x-1}$ is equal to: 21.
- $\frac{\pi^2}{6}$ (B) $\frac{\pi^2}{3}$ (C) $\frac{\pi^2}{2}$ (D) π^2
- Let f and g be twice differential even functions on (-2, 2) such that $f\left(\frac{1}{4}\right) = 0$, $f\left(\frac{1}{2}\right) = 0$, f(1) = 1 and 22.

 $g\left(\frac{3}{4}\right) = 0$, g(1) = 2. Then, the minimum number of solutions of f(x) g''(x) + f'(x) g'(x) = 0 in (-2, 2) is

- equal to _____
- Let $f: R \to R$ be a function defined by: 23.

$$f(x) \begin{cases} \max \left\{ t^3 - 3t \right\} t \le x ; & x \le 2 \\ x^2 + 2x - 6 ; & 2 < x < 3 \\ \left[x - 3 \right] + 9 ; & 3 \le x \le 5 \\ 2x + 1 ; & x > 5 \end{cases}$$

Where [t] is the greatest integer less than or equal to t. Let m be the number of points where t is not differentiable and $I = \int_{2}^{2} f(x)dx$. Then the ordered pair (m, l) is equal to:

- (A) $\left(3, \frac{27}{4}\right)$ (B) $\left(3, \frac{23}{4}\right)$ (C) $\left(4, \frac{27}{4}\right)$ (D) $\left(4, \frac{23}{4}\right)$

Differential Calculus-2 Class - XII | Mathematics

JEE M	lain 20)21						
1.	The fur	$f(x) = \frac{4x}{}$	$\frac{3-3x^2}{6}$	– 2sin <i>x</i> + (2 <i>x</i> – 1))cos x :			
	(A)	increases in (-	$-\infty, \frac{1}{2}$		(B)	decreases in	$\frac{1}{2}$, ∞	
	(C)	decreases in ($-\infty$, $\frac{1}{2}$		(D)	increases in	$\frac{1}{2}$, ∞	
2.	If the t	angent to the cu	ırve y=	x^3 at the point	$P(t, t^3)$ 1	meets the curve	again a	t Q, then the ordinate of
	the poi	nt which divides	PQ inte	rnally in the rati	o 1 : 2 is	S:		
	(A)	$-t^3$	(B)	2t ³	(C)	0	(D)	$-2t^{3}$
3.	If the c	urve $y = ax^2 + b$	$X + C, X \in$	R , passes thro	ugh the	point (1,2) and t	the tange	ent line to this curve at
	origin i	s y = x, then the	ne possib	ole values of a, b	, <i>c</i> , are:			
	(A)	$a = \frac{1}{2}, b = \frac{1}{2}, c =$	1			a=-1,b=1, c=		
	(C)	a = 1, b = 1, c = 0			(D)	a = 1, b = 0, c =	1	
4.	If Rolle	's theorem holds	s for the	function $f(x) =$	$x^3 - ax^2$	$x^2 + bx - 4, x \in [1,$	2] with	$f'\left(\frac{4}{3}\right) = 0$, then ordered
	pair (a	, b) is equal to:						
	(A)	(5, 8)	(B)	(5, –8)	(C)	(-5, -8)	(D)	(-5, 8)
5.	Let f(x) be a polynom	ial of de	gree 6 in x, in w	hich the	coefficient of x	⁶ is uni	ty and it has extrema at
	<i>x</i> = −1	and $x = 1$. If x	$\lim_{x \to 0} \frac{f(x)}{x^3}$	= 1, then $5 \cdot f(2)$	2) is equa	al to		
6.	The sh	ortest distance b	etween t	the line $x - y = 1$	and the	e curve $x^2 = 2y$	is:	
	(A)	1/2	(B)	$\frac{1}{2\sqrt{2}}$	(C)	0	(D)	$\frac{1}{\sqrt{2}}$
7.	If the c	urves $x = y^4$ an	dxy = k	cut at right and	gles, the	n (4 <i>k</i>) ⁶ is equal	to	·
8.	The ma	aximum slope of	the curv	$y = \frac{1}{2}x^4 - 5x^3$	$^{3}+18x^{2}-$	–19x occur at t	he point	:
	(A)	(2, 9)	(B)	(0, 0)	(C)	(2, 2)	(D)	$\left(3,\frac{21}{2}\right)$
9.	The tria	angle of maximu	m area t	hat can be inscr	ibed in a	a given circle of r	radius 'r'	is:
	(A)	An isosceles tri	angle wi	th base equal to	2r.			
	(B)	An equilateral	triangle l	having each of its	s side of	length $\sqrt{3}r$.		

A right angle triangle having two of its sides of length 2r and r.

An equilateral triangle of height $\frac{2r}{3}$.

(C)

(D)

- Let a be an integer such that all the real roots of the polynomial $2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x + 10$ lie 10. in the interval (a, a + 1). Then, |a| is equal to
- Consider the function $f: R \to R$ defined by $f(x) = \begin{cases} \left(2 \sin\left(\frac{1}{x}\right)\right) |x|, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then f is: 11.
 - (A) monotonic on $(-\infty, 0)$ only
- (B) monotonic on $(-\infty, 0) \cup (0, \infty)$
- (C) monotonic on $(0, \infty)$ only
- (D) not monotonic $(-\infty, 0)$ and $(0, \infty)$
- Let $\alpha \in R$ be such that the function $f(x) = \begin{cases} \frac{\cos^{-1}(1 \{x\}^2)\sin^{-1}(1 \{x\})}{\{x\} \{x\}^3}, & x \neq 0 \\ \alpha, & x = 0 \end{cases}$ is continuous at x = 0, 12.

where $\{x\} = x - [x]$, [x] is the greatest integer less than or equal to x. Then:

 $\alpha = \frac{\pi}{\sqrt{2}}$

no such α exists

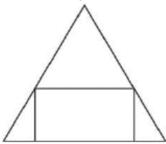
- **(D)** $\alpha = 0$
- If for $x \in \left(0, \frac{\pi}{2}\right)$, $\log_{10} \sin x + \log_{10} \cos x = -1$ and $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n 1) n > 0$, then the 13.
 - value of n is equal to:
 - (A) 20
- (B)
- (C) 12

14. The range of $a \in R$ for which the function

 $f(x) = (4a - 3)(x + \log_e 5) + 2(a - 7)\cot\left(\frac{x}{2}\right)\sin^2\left(\frac{x}{2}\right), x \neq 2n\pi, n \in \mathbb{N}$ has critical points, is:

- (A) $\left| -\frac{4}{3}, 2 \right|$ (B) (-3, 1) (C) [1, ∞)

- If a rectangle is inscribed in an equilateral triangle of side length $2\sqrt{2}$ as shown in the figure, then the 15. square of the largest area of such a rectangle is _____



- Let $f(x) = 3\sin^4 x + 10\sin^3 x + 6\sin^2 x 3, x \in \left[-\frac{\pi}{6}, \frac{\pi}{2} \right]$. Then, f is: 16.
 - decreasing in $\left(-\frac{\pi}{6},0\right)$ (A)
- (B) increasing in $\left(-\frac{\pi}{6}, \frac{\pi}{2}\right)$ (D) increasing in $\left(-\frac{\pi}{6}, 0\right)$
- decreasing in $\left[0, \frac{\pi}{2}\right]$

17. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} -\frac{4}{3}x^3 + 2x^2 + 3x, & x > 0\\ 3xe^x, & x \le 0 \end{cases}$$

Then *f* is increasing function in the interval.

(A)
$$\left(-1, \frac{3}{2}\right)$$

(-3, -1) (B)

(C) (0, 2)

(D) $\left(-\frac{1}{2},2\right)$

Let 'a' be a real number such that the function $f(x) = ax^2 + 6x - 15, x \in R$ is increasing in $\left(-\infty, \frac{3}{4}\right)$ and 18.

decreasing in $\left(\frac{3}{4},\infty\right)$. Then the function $g(x) = ax^2 - 6x + 15, x \in R$ has a:

- local maximum at $x = -\frac{3}{4}$ (A)
- **(B)** local minimum at $x = -\frac{3}{4}$
- local minimum at $x = \frac{3}{4}$ (C)
- **(D)** local maximum at $x = \frac{3}{4}$

19. Let $f: R \to R$ be defined as

$$f(x) = \begin{cases} \frac{\lambda \left| x^2 - 5x + 6 \right|}{\mu(5x - x^2 - 6)}, x < 2 \\ \frac{\tan(x - 2)}{e^{\frac{1}{x - [x]}}}, x > 2 \\ \mu, x = 2 \end{cases}$$

Where [x] is the greatest integer less than or equal to x. If f is continuous at x = 2, then $\lambda + \mu$ is equal to:

- (B)
 - e(-e+1)
- (C) 2*e* – 1
- Let f(x) be a cubic polynomial with f(1) = -10, f(-1) = 6, and has a local minima at x = 1, and f'(x) has a 20. local minima at x = -1. Then f(3) is equal to _____
- The number of distinct real roots of the equation $3x^4 + 4x^3 12x^2 + 4 = 0$ is _____ 21.
- A wire of length 20 m is to be cut into two pieces. One of the pieces is to be made into a square and the 22. other into a regular hexagon. Then the length of the side (in meters) of the hexagon, so that the combined area of the square and the hexagon is minimum, is:
 - (A)

- The local maximum value of the function $f(x) = \left(\frac{2}{x}\right)^{x^2}$, x > 0, is: 23.
 - (A)
- $\left(\frac{4}{\sqrt{a}}\right)^{\frac{c}{4}}$ (c) 1
- 24. A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum and the circumference of the circle is k (meter), then $\left(\frac{4}{\pi}+1\right)k$ is equal to _____.
- 25. A box open from top is made from a rectangular sheet of dimension $a \times b$ by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to:
 - $\frac{a+b+\sqrt{a^2+b^2-ab}}{6}$ (A)
- (B) $\frac{a+b-\sqrt{a^2+b^2-ab}}{12}$ (D) $\frac{a+b-\sqrt{a^2+b^2+ab}}{6}$
- $\frac{a+b-\sqrt{a^2+b^2-ab}}{2}$

26.	Let	Μ	and	m	respectively	be	the	maximum	and	minimum	values	of	the	function
	f(x)) = ta	an ⁻¹ (si	n <i>x</i> +	$\cos x$) in $\left[0, \frac{2}{3}\right]$	$\left[\frac{\tau}{2}\right]$. T	hen th	ne value of ta	an (<i>M</i> –	m) is equal	to:			

(A)
$$3-2\sqrt{2}$$

B)
$$2 - \sqrt{ }$$

(C)
$$3+2\sqrt{2}$$
 (D) $2+\sqrt{3}$

D)
$$2 + \sqrt{3}$$

27. Let
$$f: R \to R$$
 be defined as:

$$f(x) = \begin{cases} -55 \ x, & \text{if} \quad x < -5 \\ 2x^3 - 3x^2 - 120x, & \text{if} \quad -5 \le x \le 4 \\ 2x^3 - 3x^2 - 36x - 336 & \text{if} \quad x > 4, \end{cases}$$

Let $A = \{x \in R : f \text{ is increasing}\}$. Then A is equal to:

(A)
$$(-\infty, -5) \cup (-4, \infty)$$
 (B)

$$(-\infty, -5) \cup (-4, \infty)$$
 (B) $(-5, -4) \cup (4, \infty)$ **(C)**

(D)
$$(-\infty, -5) \cup (4, \infty)$$

28. Let
$$f$$
 be a real valued function, defined on $R - \{-1, 1\}$ and given by $f(x) = 3 \log_e \left| \frac{x-1}{x+1} \right| - \frac{2}{x-1}$. Then in which of the following intervals, function $f(x)$ is increasing?

(A)
$$(-\infty, \infty) - \{-1, 1\}$$

(B)
$$\left(-\infty, \frac{1}{2}\right] - \{-1\}$$

(C)
$$(-\infty, -1) \cup \left(\left\lceil \frac{1}{2}, \infty \right) - \{1\} \right)$$

(D)
$$\left(-1, \frac{1}{2}\right]$$

29. If the normal to the curve
$$y(x) = \int_{0}^{x} (2t^2 - 15t + 10) dt$$
 at a point (a, b) is parallel to the line $x + 3y = -5$, $a > 1$, then the value of $|a + 6b|$ is equal to _____.

30. Let
$$f:(a,b) \to R$$
 be twice differentiable function such that $f(x) = \int_a^x g(t)dt$ for a differentiable function $g(x)$. If $f(x)=0$ has exactly five distinct roots in (a,b) then $g(x)g'(x)=0$ has at least:

(A) Twelve roots in
$$(a, b)$$

31. Let a function
$$g:[0, 4] \to R$$
 be defined as $g(x) = \begin{cases} \max \{t^3 - 6t^2 + 9t - 3\}, & 0 \le x \le 3 \\ 0 \le t \le x \\ 4 - x \end{cases}$, then the number of points in the interval $(0, 4)$ where $g(x)$ is NOT differentiable, is ______.

32. The sum of all the local minimum values of the twice differentiable function $f: R \to R$ defined by

$$f(x) = x^3 - 3x^2 - \frac{3f''(2)}{2}x + f''(1)$$
 is:

33. Let
$$f$$
 be any continuous function on $[0, 2]$ and twice differentiable on $(0, 2)$. If $f(0) = 0$,

$$f(1) = 1$$
 and $f(2) = 2$, then:

(A)
$$f''(x) > 0$$
 for all $x \in (0, 2)$

(B)
$$f''(x) = 0$$
 for all $x \in (0, 2)$

(C)
$$f'(x) = 0$$
 for some $x \in [0, 2]$

(D)
$$f''(x) = 0$$
 for some $x \in (0, 2)$

34. The number of real roots of the equation
$$e^{4x} + 2e^{3x} - e^x - 6 = 0$$
 is/are:

JEE Advanced 2021

1. Let
$$f: R \to R$$
 be defined by $f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$

Then which of the following statements is (are) TRUE?

f is decreasing in the interval (-2, -1) (A)

- (B) f is increasing in the interval (1, 2)
- (C) f is onto
- **(D)** Range of f is $\left[-\frac{3}{2}, 2\right]$

Class - XII | Mathematics Differential Calculus-2

JEE Main 2022

1.	Let $f(x) = -$	$\begin{cases} x^3 - x^2 + 10x - 7, \\ -2x + \log_2(b^2 - 4), \end{cases}$	$x \le 1$ $x > 1$	Then the set	of all	values of b	, for which	f(x)has	maximum
----	----------------	--	-------------------	--------------	--------	-------------	-------------	---------	---------

value at x = 1, is:

(B)

 $[-6, -2) \cup (2, 6]$ (C)

(D) $\left[-\sqrt{6}, -2 \right) \cup (2, \sqrt{6} \right]$

- 2. A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semivertical angle is $\tan^{-1}\frac{3}{4}$. Water is poured in it at a constant rate of 6 cubic meter per hour. The rate (in square meter per hour), at which the wet curved surface area of the tank is increasing, when the depth of water in the tank is 4 meters, is ____
- Let P and Q be any points on the curves $(x-1)^2 + (y+1)^2 = 1$ and $y = x^2$, respectively. The distance 3. between P and Q is minimum for some value of the abscissa of P in the interval:

 $\left(0, \frac{1}{4}\right)$ (B) $\left(\frac{1}{2}, \frac{3}{4}\right)$ (C) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (D) $\left(\frac{3}{4}, 1\right)$

Let $f(x) = 3^{(x^2-2)^3+4}$, $x \in R$. Then which of the following statements are true? 4.

P: x = 0 is a point of local minima of f

Q: $x = \sqrt{2}$ is a point of inflection of f

R: f' is increasing for $x > \sqrt{2}$

Only P and Q (B) Only P and R (C) Only Q and R (D) All P, Q and R

- If the tangent to the curve $y = x^3 x^2 + x$ at the point (a,b) is also tangent to the curve 5. $y = 5x^2 + 2x - 25$ at the point (2, -1), then |2a + 9b| is equal to _____
- The slope of normal at any point (x,y), x > 0, y > 0 on the curve y = y(x) is given by $\frac{x^2}{yy y^2y^2 1}$. If 6. the curve passes through the point (1, 1), then $e \cdot y(e)$ is equal to:

(A)

(B) tan(1)

(C) 1 (D) $\frac{1 + \tan(1)}{1 - \tan(1)}$

Let λ^* be the largest value of λ for which the function $f_{\lambda}(x) = 4\lambda x^3 - 36\lambda x^2 + 36x + 48$ is increasing 7. for all $x \in R$. Then $f_{\lambda^*}(1) + f_{\lambda^*}(-1)$ is equal to:

(A) 36 (B) 48 (C) 64 (D) 72

			 			g 		
8.				•	-			constant rate. If initially, ss radius after 9 seconds
	is:							
	(A)	9	(B)	10	(C)	11	(D)	12
9.	For the	e function						
	f(x) =	$4\log_e(x-1)-2$	$x^2 + 4x$	+5, x > 1, which	one of t	the following is	NOT corre	ect?
	(A)	f is increasing	in (1, 2)	and decreasing	in (2, ∞)			
	(B)	f(x) = -1 has	exactly t	two solutions				
	(C)	f '(e) - f "(2) <	O					
	(D)	f(x) = 0 has a	a root in	the interval (e, ϵ	+ 1)			
10.	If the	tangent at the	point ((x_1, y_1) on the (x_1, y_1)	curve y	$=x^3+3x^2+5$	passes t	nrough the origin, then
	(x_1, y_1)) does NOT lie	on the cu	rve:				
	(A)	$x^2 + \frac{y^2}{81} = 2$	(B)	$\frac{y^2}{9} - x^2 = 8$	(C)	$y = 4x^2 + 5$	(D)	$\frac{x}{3} - y^2 = 2$
11.	Water	is being filled a	it the rat	e of 1 <i>cm</i> ³ /sec	in a riç	ght circular co	nical vess	el (vertex downwards) of
	height	35cm and diam	neter 14c	m. When the he	iaht of th	ne water level	is 10 <i>cm.</i> t	ne rate (in <i>cm</i> ² / sec) at
				are of the vessel				(d., , 555) at
	(A)	5	(B)	$\frac{\sqrt{21}}{5}$	(C)	$\frac{\sqrt{26}}{5}$	(D)	$\frac{\sqrt{26}}{10}$
12.	If the	angle made by t	he tange	nt at the point (x_0, y_0	on the curve		10
							π	
	x = 12	$t(t + \sin t \cos t), y$	= 12(1+1)	$(\sin t)^2$, $0 < t < \frac{\pi}{2}$	with th	e positive <i>x-</i> ax	is is $\frac{\pi}{3}$, th	en y_0 is equal to:
	(A)	$6\left(3+2\sqrt{2}\right)$	(B)	$3\left(7+4\sqrt{3}\right)$	(C)	27	(D)	48
13.	Let f	$(x) = \left (x-1) \left(x^2 \right) \right $	-2x-3	$+x-3, x \in \mathbb{R}$. If	m and	M are respecti	vely the n	umber of points of local
	minim	um and local ma	aximum	of f in the interv	/al (0, 4)	, then $m + M$ i	s equal to	·
14.	Consid	der a cuboid of	sides 2	x, $4x$ and $5x$ ar	nd a clos	sed hemispher	e of radiu	is r . If the sum of their
	surfac	e areas is a cons	stant <i>k</i> , t	hen the ratio x :	r, for wh	nich the sum o	f their volu	ımes is maximum, is:
	(A)	2:5	(B)	19 : 45	(C)	3:8	(D)	19 : 15
15.	If $y = $	y(x) is the solu	tion of th	e differential eq	uation λ	$x\frac{dy}{dx} + 2y = xe^{x}$	y(1) = 0	then the local maximum
	value (of the function 2	$z(x) = x^2$	$y(x) - e^X, x \in R$ i	is:			
	(A)) 1 – e	(B)	0	(C	$\frac{1}{2}$	(D	$\frac{4}{e} - e$
16.	The s	sum of the a	absolute	minimum and	d the	absolute max	kimum va	alues of the function
	f(x) =	$\left 3x-x^2+2\right -x$	in the i	nterval [–1, 2] is	:			
	(A)	$\frac{\sqrt{17}+3}{2}$	(B)	$\frac{\sqrt{17}+5}{2}$	(C)	5	(D)	$\frac{9-\sqrt{17}}{2}$

Let S be the set of all the natural numbers, for which the line $\frac{x}{a} + \frac{y}{b} = 2$ is a tangent to the curve 17.

$$\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$$
 at the point (a,b) , $ab \neq 0$. Then:

- $S = \{2k : k \in N\}$ **(D)**
- 18. If m and n respectively are the number of local maximum and local minimum points of the function
 - $f(x) = \int_{-2+e^t}^{x^2} \frac{t^2 5t + 4}{2 + e^t} dt$, then the ordered pair (m,n) is equal to:
 - (3, 2)(A)

- **(B)** (2, 3) **(C)** (2, 2) **(D)** (3, 4)
- Let f be a differentiable function in $\left(0, \frac{\pi}{2}\right)$ If $\int_{-\infty}^{1} t^2 f(t) dt = \sin^3 x + \cos x$, then $\frac{1}{\sqrt{3}} f'\left(\frac{1}{\sqrt{3}}\right)$ is equal 19.
 - to:

- (A) $6-9\sqrt{2}$ (B) $6-\frac{9}{\sqrt{2}}$ (C) $\frac{9}{2}-6\sqrt{2}$ (D) $\frac{9}{\sqrt{2}}-6$
- 20. Let the slope of the tangent to a curve y = f(x) at (x,y) be given by $2 \tan x (\cos x - y)$. If the curve
 - passes through the point $(\pi/4,0)$, then the value of $\int_{0}^{\pi/2} y dx$ is equal to:
- $(2-\sqrt{2})+\frac{\pi}{\sqrt{2}}$ (B) $2-\frac{\pi}{\sqrt{2}}$ (C) $(2+\sqrt{2})+\frac{\pi}{\sqrt{2}}$ (D) $2+\frac{\pi}{\sqrt{2}}$
- The number of real solution of the equation $e^{4x} + 4e^{3x} 58e^{2x} + 4e^{x} + 1 = 0$ is ______. 21.
- Let I be a line which is normal to the curve $y = 2x^2 + x + 2$ at a point P on the curve. If the point 22. Q(6, 4) lies on the line I and O is origin, then the area of the triangle OPQ is equal to _____
- Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = (x-3)^{n_1} (x-5)^{n_2}, n_1, n_2 \in \mathbb{N}$. Then, which of the following 23. is NOT true?
 - For $n_1 = 3$, $n_2 = 4$, there exists $\alpha \in (3,5)$ where f attains local maxima (A)
 - For $n_1 = 4$, $n_2 = 3$, there exist $\alpha \in (3,5)$ where f attains local minima
 - For $n_1 = 3, n_2 = 5$, there exists $\alpha \in (3,5)$ where f attains local maxima (C)
 - For $n_1 = 4$, $n_2 = 6$, there exists $\alpha \in (3,5)$ where f attains local maxima
- A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the 24. other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is:
 - (A)

- (B) $\frac{66}{9+4\sqrt{3}}$ (C) $\frac{22}{4+9\sqrt{3}}$ (D) $\frac{66}{4+9\sqrt{3}}$

Integral Calculus-1

Class - XII | Mathematics

JEE Main 2021

If $\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = a \sin^{-1} \left(\frac{\sin x + \cos x}{b} \right) + c$, where c is a constant of integration, then the ordered pair (a, b) is equal to:

(-1, 3)(A)

(B)

The value of the integral $\int \frac{\sin\theta \cdot \sin 2\theta (\sin^6\theta + \sin^4\theta + \sin^2\theta) \sqrt{2\sin^4\theta + 3\sin^2\theta + 6}}{1 - \cos^{2\theta}} d\theta \text{ is :}$ 2.

(Where c is constant of integration)

(A)
$$\frac{1}{18} [9 - 2\sin^2\theta - 3\sin^4\theta - 6\sin^2\theta]^{3/2} + c$$

(B)
$$\frac{1}{18} [11 - 18\sin^2\theta - 9\sin^4\theta - 2\sin^6\theta]^{3/2} + c$$

(C)
$$\frac{1}{18}[9-2\cos^6\theta-3\cos^4\theta-6\cos^2\theta]^{3/2}+c$$

(D)
$$\frac{1}{18} [11 - 18\cos^2\theta + 9\cos^4\theta - 2\cos^6\theta]^{3/2} + c$$

The integral $\int \frac{e^{3\log_e 2x} + 5e^{2\log_e 2x}}{e^{4\log_e x} + 5e^{3\log_e x} - 7e^{2\log_e x}} dx$, x > 0, is equal to: 3.

(where c is a constant of integration)

(A)
$$4 \log_e |x^2 + 5x - 7| + c$$

(B)
$$\frac{1}{4} \log_e |x^2 + 5x - 7| + c$$

(C)
$$\log_e |x^2 + 5x - 7| + c$$

(D)
$$\log_e \sqrt{x^2 + 5x - 7} + c$$

For real numbers α , β , γ and δ , if 4.

$$\int \frac{(x^2 - 1) + \tan^{-1}\left(\frac{x^2 + 1}{x}\right)}{(x^4 + 3x^2 + 1)\tan^{-1}\left(\frac{x^2 + 1}{x}\right)} dx = \alpha \log_e\left(\tan^{-1}\left(\frac{x^2 + 1}{x}\right)\right) + \beta \tan^{-1}\left(\frac{\gamma(x^2 - 1)}{x}\right) + \delta \tan^{-1}\left(\frac{x^2 + 1}{x}\right) + C \text{ where }$$

C is an arbitrary constant, then the value of $10(\alpha + \beta \gamma + \delta)$ is equal to ______.

The integral $\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{4x^2-4x+6}} dx$ is equal to: 5.

(where c is a constant of integration)

(A)
$$\frac{1}{2}\sin\sqrt{(2x-1)^2+5}+c$$

(B)
$$\frac{1}{2}\cos\sqrt{(2x+1)^2+5}$$

(C)
$$\frac{1}{2}\sin\sqrt{(2x+1)^2+5}+c$$

(B)
$$\frac{1}{2}\cos\sqrt{(2x+1)^2+5} + c$$
(D)
$$\frac{1}{2}\cos\sqrt{(2x-1)^2+5} + c$$

If $f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$, $(x \ge 0)$, f(0) = 0 and $f(1) = \frac{1}{k}$, then the value of K is _____. 6.

7. If
$$\int \frac{dx}{(x^2+x+1)^2} = a \tan^{-1} \left(\frac{2x+1}{\sqrt{3}}\right) + b \left(\frac{2x+1}{x^2+x+1}\right) + C$$
, $x > 0$ where C is the constant of integration, then the value of $9(\sqrt{3}a+b)$ is equal to _______.

8. The integral
$$\int \frac{1}{\sqrt[4]{(x-1)^3(x+2)^5}} dx$$
 is equal to : (Where C is a constant of integration)

(A)
$$\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{\frac{5}{4}} + C$$
 (B) $\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{\frac{1}{4}} + C$ (C) $\frac{3}{4} \left(\frac{x+2}{x-1} \right)^{\frac{1}{4}} + C$ (D) $\frac{3}{4} \left(\frac{x+2}{x-1} \right)^{\frac{5}{4}} + C$

JEE Advanced 2021

Paragraph for Question 1 and 2

Let
$$g_i: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to \mathbb{R}, i = 1, 2$$
, and $f: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to R$ be functions such that

$$g_1(x) = 1$$
, $g_2(x) = |4x - \pi|$ and $f(x) = \sin^2 x$, for all $x \in \left[\frac{\pi}{8}, \frac{3\pi}{8}\right]$

Define
$$S_i = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x) \cdot g_i(x) dx$$
, $i = 1, 2$

1. The value of
$$\frac{16S_1}{\pi}$$
 is _____.

2. The value of
$$\frac{48S_2}{\pi^2}$$
 is _____.

Paragraph for Question 3 & 4

Let
$$\psi_1: [0, \infty) \to \mathbb{R}, \ \psi_2: [0, \infty) \to \mathbb{R}, \ f: [0, \infty) \to R$$
 and $g: [0, \infty) \to R$ be functions such that $f(0) = g(0) = 0$,

$$\psi_{1}(x) = e^{-x} + x, x \ge 0,$$

$$\psi_{2}(x) = x^{2} - 2x - 2e^{-x} + 2, x \ge 0,$$

$$f(x) = \int_{-x}^{x} (|t| - t^{2})e^{-t^{2}}dt, x > 0$$

and

$$g(x) = \int_0^{x^2} \sqrt{t} e^{-t} dt, \qquad x > 0$$

3. Which of the following statements is **TRUE**?

(A)
$$f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = \frac{1}{3}$$

(B) For every
$$x > 1$$
, there exists an $\alpha \in (1, x)$ such that $\psi_1(x) = 1 + \alpha x$

(C) For every
$$x > 0$$
, there exists a $\beta \in (0, x)$ such that $\psi_2(x) = 2x(\psi_1(\beta) - 1)$

(D)
$$f$$
 is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

4. Which of the following statements is **TRUE**?

(A)
$$\psi_1(x) \le 1$$
, for all $x > 0$

(B)
$$\psi_2(x) \le 0$$
, for all $x > 0$

(C)
$$f(x) \ge 1 - e^{-x^2} - \frac{2}{3}x^3 + \frac{2}{5}x^5$$
, for all $x \in \left(0, \frac{1}{2}\right)$

(D)
$$g(x) \le \frac{2}{3}x^3 - \frac{2}{5}x^5 + \frac{1}{7}x^7$$
, for all $x \in \left(0, \frac{1}{2}\right)$

Integral Calculus-1

Class - XII | Mathematics

JEE Main 2022

1. The integral
$$\int \frac{\left(1 - \frac{1}{\sqrt{3}}\right) \left(\cos x - \sin x\right)}{\left(1 + \frac{2}{\sqrt{3}}\sin 2x\right)} dx$$
 is equal to:

(A)
$$\frac{1}{2}\log_e \left| \frac{\tan\left(\frac{x}{2} + \frac{\pi}{12}\right)}{\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)} \right| + C$$

(B)
$$\frac{1}{2}\log_e \left| \frac{\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{x}{2} + \frac{\pi}{3}\right)} + C \right|$$

(C)
$$\log_e \left| \frac{\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{x}{2} + \frac{\pi}{12}\right)} + C \right|$$

(D)
$$\frac{1}{2}\log_e \left| \frac{\tan\left(\frac{x}{2} - \frac{\pi}{12}\right)}{\tan\left(\frac{x}{2} - \frac{\pi}{6}\right)} + C \right|$$

2. The integral
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{3 + 2\sin x + \cos x} dx$$
 is equal to:

(A)
$$\tan^{-1}(2)$$

(B)
$$\tan^{-1}(2) - \frac{\pi}{4}$$

(C)
$$\frac{1}{2} \tan^{-1}(2) - \frac{\pi}{8}$$

(D)
$$\frac{1}{2}$$

3.
$$\lim_{n\to\infty} \left(\frac{n^2}{(n^2+1)(n+1)} + \frac{n^2}{(n^2+4)(n+2)} + \frac{n^2}{(n^2+9)(n+3)} + \dots + \frac{n^2}{(n^2+n^2)(n+n)} \right) \text{ is equal to:}$$

(A)
$$\frac{\pi}{8} + \frac{1}{4} \log_e 2$$
 (B) $\frac{\pi}{4} + \frac{1}{8} \log_e 2$ (C) $\frac{\pi}{4} - \frac{1}{8} \log_e 2$ (D) $\frac{\pi}{8} + \log_e \sqrt{2}$

$$\frac{\pi}{4} + \frac{1}{8} \log_e 2$$

$$\frac{\pi}{4} - \frac{1}{8} \log_e 2$$

(D)
$$\frac{\pi}{8} + \log_e \sqrt{2}$$

4. Let
$$g:(0,\infty) \to R$$
 be a differentiable function such that

$$\int \left(\frac{x(\cos x - \sin x)}{e^x + 1} + \frac{g(x)(e^x + 1 - xe^x)}{(e^x + 1)^2} \right) dx = \frac{x g(x)}{e^x + 1} + c \text{ for all } x > 0 \text{, where } c \text{ is an arbitrary constant. Then:}$$

(A)
$$g$$
 is decreasing in $\left(0, \frac{\pi}{4}\right)$

(B)
$$g'$$
 is increasing in $\left(0, \frac{\pi}{4}\right)$

(C)
$$g+g'$$
 is increasing in $\left(0,\frac{\pi}{2}\right)$

(D)
$$g-g'$$
 is increasing in $\left(0,\frac{\pi}{2}\right)$

5.
$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4}$$
 is equal to:

(A)
$$\frac{1}{3}$$

2)
$$\frac{1}{12}$$

6. If
$$\int \frac{1}{x} \sqrt{\frac{1-x}{1+x}} dx = g(x) + c$$
, $g(1) = 0$, then $g\left(\frac{1}{2}\right)$ is equal to:

(A)
$$\log_e \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1} \right) + \frac{\pi}{3}$$

(B)
$$\log_e \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right) + \frac{\pi}{3}$$

(C)
$$\log_e \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right) - \frac{\pi}{3}$$

(D)
$$\frac{1}{2} \log_e \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1} \right) - \frac{\pi}{6}$$

7. The integral
$$\frac{24}{\pi} \int_0^{\sqrt{2}} \frac{(2-x^2)dx}{(2+x^2)\sqrt{4+x^4}}$$
 is equal to _____.

8.
$$\lim_{x \to \frac{1}{\sqrt{2}}} \frac{\sin(\cos^{-1} x) - x}{1 - \tan(\cos^{-1} x)}$$
 is equal to:

(A)
$$\sqrt{2}$$

(B)
$$-\sqrt{2}$$

$$C) \qquad \frac{1}{\sqrt{2}}$$

(D)
$$-\frac{1}{\sqrt{2}}$$

The integral $\int_{0}^{1} \frac{1}{7^{[1/x]}} dx$, where [.] denotes the greatest integer function, is equal to:

(A)
$$1+6\log_e\left(\frac{6}{7}\right)$$
 (B) $1-6\log_e\left(\frac{6}{7}\right)$ (C) $\log_e\left(\frac{7}{6}\right)$ (D) $1-7\log_e\left(\frac{6}{7}\right)$

$$1-6\log_e\left(\frac{6}{7}\right)$$

$$\log_{e}\left(\frac{7}{6}\right)$$

(D)
$$1 - 7 \log_e \left(\frac{6}{7}\right)$$

Let a be an integer such that $\lim_{x\to 7} \frac{18-[1-x]}{[x-3a]}$ exits, where [t] is greatest integer $\le t$. Then a is equal 10.

to:

If $\int \frac{(x^2+1)e^x}{(x+1)^2} dx = f(x)e^x + C$, where C is a constant, then $\frac{d^3 f}{dx^3}$ at x=1 is equal to: 11.

(A)
$$\frac{-3}{4}$$

(B)
$$\frac{3}{4}$$
 (C) $-\frac{3}{2}$ (D) $\frac{3}{2}$

D)
$$\frac{3}{2}$$

Let f be a real valued continuous function on [0, 1] and $f(x) = x + \int_{0}^{1} (x - t) f(t) dt$. Then, which of the 12.

following points (x, y) lies on the curve y = f(x)?

13. For
$$I(x) = \int \frac{\sec^2 x - 2022}{\sin^{202} x} dx$$
, if $I(\frac{\pi}{4}) = 2^{1011}$, then:

(A)
$$3^{1010} I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0$$

(B)
$$3^{1010} I\left(\frac{\pi}{6}\right) - I\left(\frac{\pi}{3}\right) = 0$$

(C)
$$3^{1011}I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0$$

(D)
$$3^{1011}I\left(\frac{\pi}{6}\right) - I\left(\frac{\pi}{3}\right) = 0$$

Integral Calculus-2

Class - XII | Mathematics

JEE Main 2021

	•	1
1.	Let [t] denote the greatest integer $\leq t$. Then the value of 8.	$\int ([2x]+ x)dx$ is
	_ 1	/2

Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If 2.

$$\int_0^x \sqrt{1 - (f'(t))^2} \, dt = \int_0^x f(t) \, dt, 0 \le x \le 1 \text{ and } f(0) = 0, \text{ then } \lim_{x \to 0} \frac{1}{x^2} \int_0^x f(t) \, dt:$$

does not exist **(B)** equals $\frac{1}{2}$ **(C)** equals 0 **(D)** (A) equals 1

The area, enclosed by the curves $y = \sin x + \cos x$ and $y = |\cos x - \sin x|$ and the lines x = 0, $x = \frac{\pi}{2}$, is:

 $2\sqrt{2}(\sqrt{2}-1)$ **(B)** $4(\sqrt{2}-1)$ **(C)** $2\sqrt{2}(\sqrt{2}+1)$ **(D)** $2(\sqrt{2}+1)$

If $f: R \to R$ is given by f(x) = x + 1, then the value of $\lim_{n \to \infty} \frac{1}{4} \left[f(0) + f\left(\frac{5}{n}\right) + f\left(\frac{10}{n}\right) + \dots + f\left(\frac{5(n-1)}{n}\right) \right]$,

(A) $\frac{3}{2}$ (B) $\frac{5}{2}$ (C) $\frac{1}{2}$ (D) $\frac{7}{2}$

If $\int_{0}^{a} (|x| + |x-2|) dx = 22$, (a > 2) and [x] denotes the greatest integer $\leq x$, then $\int_{0}^{a} (x + [x]) dx$ is equal to _____

The value of the integral, $\int_{0}^{3} [x^2 - 2x - 2]dx$, when [x] denotes the greatest integer less than or equal to x,

(B) $-\sqrt{2} - \sqrt{3} - 1$ **(C)** $-\sqrt{2} - \sqrt{3} + 1$ **(D)** (A)

The area of the region : $R = \{(x, y): 5x^2 \le y \le 2x^2 + 9\}$ is: 7.

(B) $11\sqrt{3}$ square units (D) $12\sqrt{3}$ square units $9\sqrt{3}$ square units

 $6\sqrt{3}$ square units

8. Let f(x) be a differentiable function defined on [0,2] such that f'(x) = f'(2-x) for all

 $x \in (0,2), f(0) = 1$ and $f(2) = e^2$. Then the value of $\int_{0}^{\infty} f(x) dx$ is:

 $2(1+e^2)$ **(B)** $2(1-e^2)$ **(C)** $1+e^2$

The value of $\int_{-\infty}^{1} x^2 e^{[x^3]} dx$, where [t] denotes the greatest integer $\leq t$, is:

(A)

10.	The graphs of	sine and	cosine funct	ions,	inte	rsect ea	ch other	at a	numb	er of	poin	ts and	betv	wee	n two
	consecutive p	oints of	intersection,	the	two	graphs	enclose	the	same	area	Α.	Then	A^4	is	equa
	to														

- The value of $\int_{-2}^{2} |3x^2 3x 6| dx$ _____. 11.
- The value of $\int_{0}^{\pi/2} \frac{\cos^2 x}{1+3^x} dx$ is : 12.
 - (A) (D) 4π
- The value of $\sum_{n=1}^{100} \int_{1}^{n} e^{x-[x]} dx$, where [x] is the greatest integer $\leq x$, is: 13.
- (A) 100(1+e)(D) 100(e-1)(C) 100(1-e)
- 14. The area bounded by the lines y = |x-1|-2| is _____
- The value of the integral $\int_{0}^{\pi} |\sin 2x| dx$ is _____. 15.
- For x > 0, if $f(x) = \int_{1}^{x} \frac{\log_e t}{(1+t)} dt$, then $f(e) + f\left(\frac{1}{e}\right)$ is equal to : 16.
 - **(C)** –1 (A)
- Let A_1 be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$ and y-axis in the first 17. quadrant. Also, let A_2 be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x-axis and $x = \frac{\pi}{2}$ in the first quadrant. Then,

 - (A) $2A_1 = A_2 \text{ and } A_1 + A_2 = 1 + \sqrt{2}$ (B) $A_1 = A_2 \text{ and } A_1 + A_2 = \sqrt{2}$ (C) $A_1 : A_2 = 1 : 2 \text{ and } A_1 + A_2 = 1$ (D) $A_1 : A_2 = 1 : \sqrt{2} \text{ and } A_1 + A_2 = 1$
- If $I_{m,n} = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$, for $m,n \ge 1$, and $\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \alpha I_{m,n}$, $\alpha \in R$, then α equals _______. 18.
- In the integral $\int_0^{10} \frac{[\sin 2\pi x]}{\alpha^{x-[x]}} dx = \alpha e^{-1} + \beta^{-1/2} + \gamma$, where α , β , γ are integer and [x] denotes the greatest 19. integer less than or equal to x, then the value of $\alpha + \beta + \gamma$ is equal to :
 - (C) (D) 10
- Let $I_n = \int_1^e x^{19} (\log |x|)^n dx$, where $n \in \mathbb{N}$. If $(20)I_{10} = \alpha I_9 + \beta I_8$, for natural numbers α and β , then 20.
- Let $f:[-3,1] \to R$ be given as $f(x) = \begin{cases} \min\{(x+6), x^2\} & , & -3 \le x \le 0 \\ \max\{\sqrt{x}, x^2\} & , & 0 \le x \le 1 \end{cases}$ 21. If the area bounded by y = f(x) and x-axis A, then the value of 6A is equal to ______
- Let $f: R \to R$ be defined as $f(x) = e^{-x} \sin x$. If $F: [0,1] \to R$ is a differentiable function such that 22.
 - $F(x) = \int_0^x f(t) dt, \text{ the value of } \int_0^1 (F'(x) + f(x)) e^x dx \text{ lies in the interval.}$ $(A) \qquad \left[\frac{330}{360}, \frac{331}{360} \right] \qquad (B) \qquad \left[\frac{327}{360}, \frac{329}{360} \right] \qquad (C) \qquad \left[\frac{331}{360}, \frac{334}{360} \right] \qquad (D) \qquad \left[\frac{335}{360}, \frac{336}{360} \right]$

- Let f(x) and g(x) be two functions satisfying $f(x^2) + g(4-x) = 4x^3$ and g(4-x) + g(x) = 0, then the 23. value of $\int_{0}^{\pi} f(x^2)dx$ is ______.
- Consider the integral $I = \int_0^{10} \frac{[x]e^{[x]}}{e^{x-1}} dx$, where [x] denotes the greatest integer less than or equal to x. 24.

Then the value of I is equal to:

- (A) 9(e+1)
- (B)
- 45(e-1) **(C)** 9(e-1)
- (D)
- The area bounded by the curve $4y^2 = x^2(4-x)(x-2)$ is equal to: ye $4y^2 = x^2(4-x)(x-2)$ is equal to: $\frac{\pi}{8}$ (C) $\frac{\pi}{16}$ (D) $\frac{3\pi}{2}$ 25.

- Let P(x) be a real polynomial of degree 3 which vanishes at x = -3. Let P(x) have local minima at 26. x = 1, local maxima at x = -1 and $\int_{0}^{\infty} P(x)dx = 18$, then the sum of all the coefficients of the polynomials P(x) is equal to:
- If [.] represents the greatest integer function, then the value of $\int_{0}^{\sqrt{\frac{\pi}{2}}} \left[[x^2] \cos x \right] dx$ is ______. 27.
- Let $f:(0, 2) \to R$ be defined as $f(x) = \log_2 \left(1 + \tan\left(\frac{\pi x}{4}\right)\right)$. 28. Then, $\lim_{n\to\infty} \frac{2}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f(1) \right)$ is equal to _____.
- Let $g(x) = \int_{0}^{x} f(t) dt$, where f is continuous function in [0, 3] such that $\frac{1}{3} \le f(t) \le 1$ for all $t \in [0, 1]$ and $0 \le f(t) \le \frac{1}{2}$ for all $t \in (1, 3]$. The largest possible interval in which g(3) lies is:
 - (A) $\left| -1, -\frac{1}{2} \right|$ (B) $\left| -\frac{3}{2}, -1 \right|$ (C) $\left| \frac{1}{3}, 2 \right|$ (D)
- Let $f: R \to R$ be a continuous function such that f(x) + f(x+1) = 2, for all $x \in R$. If $I_1 = \int_1^8 f(x) dx$ 30. and $I_2 = \int_0^3 f(x) dx$, then the value of $I_1 + 2I_2$ is equal to _____.
- If $\int_0^{\pi} (\sin^3 x) e^{-\sin^2 x} dx = \alpha \frac{\beta}{\rho} \int_0^1 \sqrt{t} e^t dt$, then $\alpha + \beta$ is equal to ______. 31.
- The area of the region bounded by y-x=2 and $x^2=y$ is equal to : 32.

- $\frac{16}{3}$ (B) $\frac{9}{2}$ (C) $\frac{4}{3}$ (D) $\frac{2}{3}$
- Let $F:[3,5] \to R$ be a twice differentiable function on (3,5) such that $F(x) = e^{-x} \int_3^x (3t^2 + 2t + 4F'(t)) dt$. 33. If $F'(4) = \frac{\alpha e^{\beta} - 224}{(\rho^{\beta} - 4)^2}$, then $\alpha + \beta$ is equal to _____.

- Let the domain of the function $f(x) = \log_4 \left(\log_5 \left(\log_3 \left(18x x^2 77 \right) \right) \right)$ be (a, b). Then the value of the 34. integral $\int_a^b \frac{\sin^3 x}{(\sin^3 x + \sin^3 (a+b-x))} dx$ is equal to _____.
- The value of the definite integral $\int_{-1}^{10/2} \frac{dx}{(1+e^{x\cos x})(\sin^4 x + \cos^4 x)}$ is equal to: 35.
- (C) $\frac{\pi}{2\sqrt{2}}$ (D) $\frac{\pi}{\sqrt{2}}$
- If the area of the bounded region $R = \left\{ (x, y) : \max\{0, \log_e x\} \le y \le 2^x, \frac{1}{2} \le x \le 2 \right\}$ 36.

is, $\alpha(\log_e 2)^{-1} + \beta(\log_e 2) + \gamma$, then the value of $(\alpha + \beta - 2\gamma)^2$ is equal to :

- (A)
- (B)
- (C)
- (D)

4

- The value of $\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{(2j-1)+8n}{(2j-1)+4n}$ is equal to : 37.
 - (A) $2 \log_e \left(\frac{2}{3}\right)$ (B) $5 + \log_e \left(\frac{3}{2}\right)$ (C) $1 + 2\log_e \left(\frac{3}{2}\right)$ (D) $3 + 2\log_e \left(\frac{2}{3}\right)$ The value of the integral $\int_{-1}^{1} \log \left(x + \sqrt{x^2 + 1} \right) dx$ is:

38.

- (D)

- 39. The area (in sq. units) of the region, given by the set
 - $\{(x,y) \in R \times R \mid x \ge 0, 2x^2 \le y \le 4 2x\}$ is:
- (C) $\frac{17}{3}$
- (D)

40. The value of the definite integral

$$\int_{\pi/24}^{5\pi/24} \frac{dx}{1 + \sqrt[3]{\tan 2x}} is:$$

- (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{18}$
- (C) $\frac{\pi}{4}$
- (D)

Let $f:[0,\infty)\to [0,\infty)$ be defined as $f(x)=\int_{0}^{x}[y]dy$ 41.

Where [x] is the greatest integer less than or equal to x. Which of the following is true?

- (A) f is continuous at every point in $[0,\infty)$ and differentiable except at the integer points
- (B) f is continuous everywhere except at the integer points in $[0,\infty)$
- (C) f is both continuous and differentiable except at the integer points in $[0,\infty)$
- (D) f is differentiable at every point in $[0,\infty)$
- The area (in sq. units) of the region bounded by the curves $x^2 + 2y 1 = 0$, $y^2 + 4x 4 = 0$ and 42. $y^2 - 4x - 4 = 0$, in the upper half plane is _____
- The value of the integral $\int_{1}^{1} \log_{e} \left(\sqrt{1-x} + \sqrt{1+x} \right) dx$ is equal to: 43.
 - $2\log_e 2 + \frac{\pi}{2} \frac{1}{2}$ (A)

(B) $\frac{1}{2}\log_e 2 + \frac{\pi}{4} - \frac{3}{2}$

(C) $\log_e 2 + \frac{\pi}{2} - 1$

(D) $2 \log_e 2 + \frac{\pi}{4} - 1$

44. If
$$\int_0^{100\pi} \frac{\sin^2 x}{\left(\frac{x}{\pi} - \left\lceil \frac{x}{\pi} \right\rceil\right)} dx = \frac{\alpha \pi^3}{1 + 4\pi^2}, \alpha \in \mathbb{R},$$

where [x] is the greatest integer less than or equal to x, then the value of α is:

- 200 $(1 e^{-1})$ **(B)**

- (D) 100 (1 – *e*)

- $\int_{1}^{10} \frac{\log_e x^2}{\log_e x^2 + \log_e (x^2 44x + 484)} dx$ is equal to: 45.
 - (A)
- (C)
- (D) 10
- If $U_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2^2}{n^2}\right)^2 \dots \left(1 + \frac{n^2}{n^2}\right)^n$, then $\lim_{n \to \infty} (U_n)^{\frac{-4}{2}}$ is equal to:

 - (A) $\frac{4}{e}$ (B) $\frac{e^2}{16}$ (C) $\frac{16}{e^2}$
- 47. Let a and b respectively be the points of local maximum and local minimum of the function

$$f(x) = 2x^3 - 3x^2 - 12x$$
.

If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4 A is equal to ___

- The value of $\int_{\pi}^{\frac{\pi}{2}} \left(\frac{1 + \sin^2 x}{1 + \pi^{\sin x}} \right) dx$ is: 48.
 - (A)
- (B) $\frac{\pi}{2}$ (C) $\frac{3\pi}{2}$
- If the value of the integral $\int_{-\infty}^{5} \frac{x + [x]}{e^{x [x]}} dx = \alpha e^{-1} + \beta$, where $\alpha, \beta \in \mathbb{R}, 5\alpha + 6\beta = 0$, and [x] denotes the 49.

greatest integer less than or equal to x; then the value of $(\alpha + \beta)^2$ is equal to:

- (A) 25
- (C)
- (D) 100
- The area of the region $S = \{(x, y) : 3x^2 \le 4y \le 6x + 24\}$ is ______ 50.
- The value of $\lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{2n-1} \frac{n^2}{n^2 + 4r^2}$ is: 51.

- (A) $\frac{1}{2} \tan^{-1} (2)$ (B) $\tan^{-1} (4)$ (C) $\frac{1}{4} \tan^{-1} (4)$ (D) $\frac{1}{2} \tan^{-1} (4)$
- The value of $\int_{-1/\sqrt{2}}^{1/\sqrt{2}} \left(\left(\frac{x+1}{x-1} \right)^2 + \left(\frac{x-1}{x+1} \right)^2 2 \right)^{1/2} dx$ is: 52.
- $2 \log_e 16$ **(B)** $4 \log_e (3 + 2\sqrt{2})$ **(C)** $\log_e 4$
- The function f(x), that satisfies the condition $f(x) = x + \int_{-\infty}^{\infty} \sin x \cdot \cos y \ f(y) \ dy$, is: 53.
 - (A) $x + \frac{2}{3}(\pi 2)\sin x$

(B) $x + (\pi + 2) \sin x$

 $x + \frac{\pi}{2} \sin x$ (C)

(D) $x + (\pi - 2) \sin x$

- If $x\phi(x) = \int_{0}^{x} (3t^2 2\phi'(t))dt$, x > -2, and $\phi(0) = 4$, then $\phi(2)$ is ______. 54.
- If $\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}} dx = \frac{1}{14} \left(ux + v \log_e (4e^x + 7e^{-x}) \right) + C$, where C is a constant of integration, then u + v is 55.
- The area of the region bounded by the parabola $(y-2)^2 = (x-1)$, the tangent to it at the point whose 56. ordinate is 3 and the x-axis is:

- (D)

- The value of the integral $\int_{-1}^{1} \frac{\sqrt{x} dx}{(1+x)(1+3x)(3+x)}$ is: **57**.
 - - $\frac{\pi}{4} \left(1 \frac{\sqrt{3}}{2} \right) \qquad \text{(B)} \qquad \frac{\pi}{4} \left(1 \frac{\sqrt{3}}{6} \right) \qquad \text{(C)} \qquad \frac{\pi}{8} \left(1 \frac{\sqrt{3}}{6} \right) \qquad \text{(D)} \qquad \frac{\pi}{8} \left(1 \frac{\sqrt{3}}{2} \right)$

- Let a be a positive real number such that $\int_{a}^{a} e^{x-[x]} dx = 10e 9$ 58.

Where $\lceil x \rceil$ is the greatest integer less than or equal to x. Then a is equal to:

- **(B)** $10 \log_e(1 + e)$ **(C)** $10 + \log_e 3$ **(D)** $10 + \log_e(1 + e)$

- If $I_n = \int_{\pi}^{\frac{n}{2}} \cot^n x \, dx$, then: 59.

 - (A) $I_2 + I_4$, $I_3 + I_5$, $I_4 + I_6$ are in G.P. (B) $\frac{1}{I_2 + I_4}$, $\frac{1}{I_3 + I_5}$, $\frac{1}{I_4 + I_6}$ are in G.P. (C) $\frac{1}{I_2 + I_4}$, $\frac{1}{I_3 + I_5}$, $\frac{1}{I_4 + I_6}$ are in G.P. (D) $I_2 + I_4$, $(I_3 + I_5)^2$, $I_4 + I_6$ are in G.P.
- $\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \dots + \frac{n}{(2n-1)^2} \right]$ is equal to: 60.

- $\frac{1}{4}$ (C) $\frac{1}{3}$
- **(D)** $\frac{1}{2}$
- Let $P(x) = x^2 + bx + c$ be a quadratic polynomial with real coefficients such that $\int_0^1 P(x) dx = 1$ and P(x)61. leaves remainder 5 when it is divided by (x-2). Then the value of 9(b+c) is equal to :

- If [x] denotes the greatest integer less than or equal to x, then the value of the integral 62. $\int_{-\pi/2}^{\pi/2} [[x] - \sin x] dx$ is equal to:

- **(C)** π
- (D)
- Let $g(t) = \int_{-\pi/2}^{\pi/2} \cos\left(\frac{\pi}{4}t + f(x)\right) dx$, where $f(x) = \log_e(x + \sqrt{x^2 + 1})$, $x \in R$. Then which one of the following 63.
 - (A)
- g(1) + g(0) = 0 **(B)** $\sqrt{2} g(1) = g(0)$ **(C)** g(1) = g(0) **(D)** $g(1) = \sqrt{2} g(0)$

JEE Advanced 2021

- The area of the region $\left\{(x,y): 0 \le x \le \frac{9}{4}, 0 \le y \le 1, x \ge 3y, x+y \ge 2\right\}$ is:
 - (1)
- (3) $\frac{37}{96}$
- (4)

Integral Calculus-2

Class - XII | Mathematics

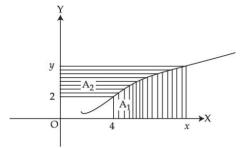
JEE Main 2022

- If $n(2n+1)\int_{0}^{1} (1-x^n)^{2n} dx = 1177\int_{0}^{1} (1-x^n)^{2n+1} dx$, then $n \in \mathbb{N}$ is equal to ______
- 2. Let a curve y = y(x) pass through the point (3, 3) and the are of the region under this curve, above the x-axis and between the abscissae 3 and x > 3 be $\left(\frac{y}{x}\right)^3$. If this curve also passes through the point $(\alpha, 6\sqrt{10})$ in the first quadrant, then α is equal to____.
- The odd natural number a, such that the area of the region bounded by y = 1, y = 3, x = 0, $x = y^a$ is 3. $\frac{364}{3}$, is equal to:

- (A) 3 (B) 5 (C) 7 (D) 9 Let $f(x) = \min\{[x-1], [x-2], ..., [x-10]\}$ Where [t] denotes the greatest integer $\le t$. 4.

Then
$$\int_{0}^{10} f(x)dx + \int_{0}^{10} (f(x))^{2} dx + \int_{0}^{10} |f(x)| dx$$
 is equal to_____.

- Let f be a differentiable function satisfying $f(x) = \frac{2}{\sqrt{3}} \int_{a}^{\sqrt{3}} f\left(\frac{\lambda^2 x}{3}\right) d\lambda$, x > 0 and $f(1) = \sqrt{3}$. If y = f(x)5. passes through the point $(\alpha, 6)$, then α is equal to
- Consider a curve y = y(x) in the first quadrant as shown in the figure. Let the area A_1 is twice the area 6. A_2 . Then the normal to the curve perpendicular to the line 2x-12y=15 does NOT pass through the point.



- (A) (6,21)
- (B) (8,9)
- (C) (10, -4)
- (D) (12, -15)
- The $\int_{1}^{2} \left(\left| 2x^2 3x \right| + \left| x \frac{1}{2} \right| \right) dx$, where [t] is the greatest integer function, is equal to:
 - (A)
- (C)

The area of the region enclosed by $y \le 4x^2, x^2 \le 9y$ and $y \le 4$, is equal to: 8.

(B) $\frac{56}{3}$

(C) $\frac{112}{3}$

Let $f(x) = 2 + |x| - |x - 1| + |x + 1|, x \in R$. 9.

(S1): $f'\left(-\frac{3}{2}\right) + f'\left(-\frac{1}{2}\right) + f'\left(\frac{1}{2}\right) + f'\left(\frac{3}{2}\right) = 2$

 $(S2): \int_{0}^{2} f(x)dx = 12$

both (S1) and (S2) are correct (A)

(B) both (S1) and (S2) are wrong

(C) only (S1) is correct (D) only (S2) is correct

The area bounded by the curves $y = \begin{vmatrix} x^2 - 1 \end{vmatrix}$ and y = 1 is: 10.

 $\frac{2}{3}(\sqrt{2}+1)$ (B) $\frac{4}{3}(\sqrt{2}-1)$ (C) $2(\sqrt{2}-1)$ (D) $\frac{8}{3}(\sqrt{3}-1)$

 $\int_{0}^{20\pi} (|\sin x| + |\cos x|)^2 dx \text{ is equal to}$ 11. **(B)** $10(\pi+2)$ **(C)** $20(\pi-2)$

(D) $20(\pi + 2)$

If $f(\alpha) = \int_{a}^{\alpha} \frac{\log_{10} t}{1+t} dt$, $\alpha > 0$, then $f(e^3) + f(e^{-3})$ is equal to:

(A) 9

(C) $\frac{9}{\log_2(10)}$ (D) $\frac{9}{2\log_2(10)}$

The area of the region $\{(x,y): |x-1| \le y \le \sqrt{5-x^2}\}$ is equal to: 13.

(A) $\frac{5}{2}\sin^{-1}\left(\frac{3}{5}\right) - \frac{1}{2}$

(B) $\frac{5\pi}{4} - \frac{3}{2}$

The value of the integral $\int_{0}^{\pi/2} \frac{dx}{(1+e^{x})(\sin^{6}x + \cos^{6}x)}$ is equal to: 14.

> (A) 2π

(B) 0 (C)

(D)

The area (in sq. units) of the region enclosed between the parabola $y^2 = 2x$ and the line x + y = 4 is 15.

Let $f(\theta) = \sin \theta + \int_{-\pi}^{\pi/2} (\sin \theta + t \cos \theta) f(t) dt$. Then the value of $\int_{0}^{\pi/2} f(\theta) d\theta$ is _____. 16.

Let S be the region bounded by the curves $y = x^3$ and $y^2 = x$. The curve y = 2 |x| divides S into two 17. regions of areas R_1 and R_2

If max $\{R_1, R_2\} = R_2$, then $\frac{R_2}{R_2}$ is equal to _____.

- The area of the region enclosed between the parabolas $y^2 = 2x 1$ and $y^2 = 4x 3$ is: 18.
- (C)

- If $b_n = \int_0^{\pi} \frac{\cos^2 nx}{\sin x} dx, n \in \mathbb{N}$, then: 19.
 - $b_3 b_2$, $b_4 b_3$, $b_5 b_4$ are in a A.P. with common difference –2 (A)
 - $\frac{1}{b_3 b_2}$, $\frac{1}{b_4 b_3}$, $\frac{1}{b_5 b_4}$ are in an A.P. with common difference 2
 - (C) $b_3 - b_2, b_4 - b_3, b_5 - b_4$ are in a G.P.
 - $\frac{1}{b_3-b_2}$, $\frac{1}{b_4-b_3}$, $\frac{1}{b_5-b_4}$ are in an A.P. with common difference –2
- The value of b > 3 for which $12\int_{3}^{b} \frac{1}{(x^2-1)(x^2-4)} dx = \log_{e}\left(\frac{49}{40}\right)$, is equal to ___ 20.
- The value of $\int_{0}^{\pi} \frac{e^{\cos x} \sin x}{(1+\cos^{2} x)(e^{\cos x}+e^{-\cos x})} dx$ is equal to: 21.
 - - $\frac{\pi^2}{1}$ (B) $\frac{\pi^2}{2}$ (C) $\frac{\pi}{4}$
- The area of the region bounded by $y^2 = 8x$ and $y^2 = 16(3-x)$ is equal to: 22.
 - (A)
- **(B)** $\frac{40}{2}$
- (C)
- (D) 19
- The area bounded by the curve $y = |x^2 9|$ and the line y = 3 is: 23.
 - $4(2\sqrt{3} + \sqrt{6} 4)$ (A)

(C) $8(4\sqrt{3} + 3\sqrt{6} - 9)$

- **(D)** $8(4\sqrt{3} + \sqrt{6} 9)$
- Let $f(x) = \max\{|x+1|, |x+2|, ..., |x+5|\}$. Then $\int_{-\infty}^{0} f(x) dx$ is equal to_____. 24.
- The value of the integral $\frac{48}{\pi^4} \int_{-\pi}^{\pi} \left[\frac{3\pi x^2}{2} x^3 \right] \frac{\sin x}{1 + \cos^2 x} dx$ is equal to ______. 25.
- If the area of the region $\left\{ (x,y): x^{\frac{2}{3}} + y^{\frac{2}{3}} \le 1, x+y \ge 0, y \ge 0 \right\}$ is A, then $\frac{256A}{\pi}$ is equal to ______. 26.
- The value of the integral $\int_{-2}^{2} \frac{\left|x^{3} + x\right|}{\left(e^{x|x|} + 1\right)} dx$ is equal to: 27.
- $5e^2$ **(B)** $3e^{-2}$

- $\text{Let } A_1 = \left\{ \left(x, y \right) : \left| x \right| \leq y^2, \left| x \right| + 2y \leq 8 \right\} \text{ and } A_2 = \left\{ \left(x, y \right) : \left| x \right| + \left| y \right| \leq k \right\} \text{ . If } 27 \left(\textit{Area } A_1 \right) = 5 \left(\textit{Area } A_2 \right), \text{then } k \in \mathbb{R}^{n}$ 28. is equal to:

Let $f: R \to R$ be a continuous function satisfying f(x) + f(x+k) = n, for all $x \in R$ where k > 0 and 29. n is a positive integer. If $I_1 = \int_{0}^{4nk} f(x)dx$ and $I_2 = \int_{-k}^{3k} f(x)dx$, then:

(A)
$$I_1 + 2I_2 = 4nk$$

(B)
$$I_1 + 2I_2 = 2nk$$

(C)
$$I_1 + nI_2 = 4n^2k$$

(D)
$$I_1 + nI_2 = 6n^2k$$

The area of the bounded region enclosed by the curve $y = 3 - \left| x - \frac{1}{2} \right| - \left| x + 1 \right|$ and the x – axis is: 30.

(A)
$$\frac{9}{4}$$

(B)
$$\frac{45}{16}$$

(c)
$$\frac{27}{8}$$

(D)
$$\frac{63}{16}$$

Let $\lceil t \rceil$ denote the greatest integer less than or equal to t. Then, the value of the integral 31. $\int \left[-8x^2 + 6x - 1 \right] dx$ is equal to:

(B)
$$\frac{-5}{4}$$

(B)
$$\frac{-5}{4}$$
 (C) $\frac{\sqrt{17}-13}{8}$ (D) $\frac{\sqrt{17}-16}{8}$

(D)
$$\frac{\sqrt{17}-16}{8}$$

The area of the region $S = \{(x,y) : y^2 \le 8x, y \ge \sqrt{2}x, x \ge 1\}$ is: 32.

(A)
$$\frac{13\sqrt{2}}{6}$$
 (B) $\frac{11\sqrt{2}}{6}$ (C) $\frac{5\sqrt{2}}{6}$ (D) $\frac{19\sqrt{2}}{6}$

(B)
$$\frac{11\sqrt{2}}{6}$$

(C)
$$\frac{5\sqrt{2}}{6}$$

(D)
$$\frac{19\sqrt{2}}{6}$$

If $\int_{1}^{2} \left(\sqrt{2x} - \sqrt{2x - x^2} \right) dx = \int_{1}^{2} \left(1 - \sqrt{1 - y^2} - \frac{y^2}{2} \right) dy + \int_{1}^{2} \left(2 - \frac{y^2}{2} \right) dy + I$ then I equals:

(A)
$$\int_{0}^{1} \left(1 + \sqrt{1 - y^2}\right) dy$$

(B)
$$\int_{0}^{1} \left(\frac{y^2}{2} - \sqrt{1 - y^2} + 1 \right) dy$$

(C)
$$\int_{0}^{1} \left(1 - \sqrt{1 - y^2}\right) dy$$

(D)
$$\int_{0}^{1} \left(\frac{y^2}{2} + \sqrt{1 - y^2} + 1 \right) dy$$

34. For real numbers a, b (a > b > 0), let

Area
$$\left\{ (x,y): x^2 + y^2 \le a^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1 \right\} = 30\pi \text{ and } \left\{ (x,y): x^2 + y^2 \ge b^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} = 18\pi$$

Then the value of $(a-b)^2$ is equal to _____.

The area enclosed by $y^2 = 8x$ and $y = \sqrt{2}x$ that lies outside the triangle formed by 35. $y = \sqrt{2}x, x = 1, y = 2\sqrt{2}$ is equal to:

(A)
$$\frac{16\sqrt{2}}{6}$$
 (B) $\frac{11\sqrt{2}}{6}$ (C) $\frac{13\sqrt{2}}{6}$

(B)
$$\frac{11}{6}$$

(C)
$$\frac{13\sqrt{2}}{6}$$

(D)
$$\frac{5\sqrt{2}}{6}$$

 $\int_0^5 \cos\left(\pi\left(x-\left\lceil\frac{x}{2}\right\rceil\right)\right) dx$, Where [t] denotes greatest integer less than or equal to t, is equal to:

		Arch	<u> 11Ve</u>	- JEE IV	laın	& AC	<u>ivance</u>	<u>ed</u>	
		Differential	Equati	ons			Class - X	II Mathema	tics
JEE N	/lain 2	021							
1.	Let th	e curve $y = y(x)$	() be the	solution of the c	differenti	al equation,	$\frac{dy}{dx} = 2(x+1)$). If the numerica	l value
						_) is equal to	
2.	If a cu	irve y = f(x) part	asses thro	ough the point (1	, 2) and	satisfies $x = \frac{1}{x}$	$\frac{dy}{dx} + y = bx^4,$	then for what valu	ue of
	$b, \int_{1}^{2} f$	$(x)dx = \frac{62}{5}?$							
	(A)	<u>62</u> 5	(B)	<u>31</u> 5	(C)	5	(D)	10	
3.	The p	opulation P = I	P(t) at time	e 't' of a certain	species	follows the o	differential eq	uation $\frac{dP}{dt} = 0.5P$	– 4 50 .
	If <i>P</i> (0			which population					
	(A)	$\frac{1}{2}\log_e 18$	(B)	\log_e 18	(C)	$\log_e 9$	(D)	2 log _e 18	
4.								and $f'(x) \neq 0$ for a	all
	$x \in R$	If $ f(x) f'(x) $ $ f'(x) f''(x) $	$\begin{vmatrix} x \\ x \end{vmatrix} = 0$, for	or all $x \in R$, the	en the va	alue of f(1) lie	es in the inter	rval:	
	(A)	(3,6)	(B)	(0, 3)	(C)	(6, 9)	(D)	(9, 12)	
5.	lf a d	curve passes t	through t	he origin and	the slop	oe of the t	angent to it	at any point (x	, y) is
	$x^2 - 4$	$\frac{4x+y+8}{x+y+8}$, ther	n this curv	ve also passes th	rough th	ne point :			
	(A)	x – 2 (4, 5)	(B)	(5, 5)	(C)	(5, 4)	(D)	(4, 4)	
6.								$1 (2xy^2 - y)dx + xd$	dv = 0
								y(1) is equal to _	
7.		o .						pacteria percent a ed by 20% in 2 ho	
	the po	opulation of bad	cteria is 20	$\frac{k}{\log_e\left(\frac{\epsilon}{\xi}\right)}$	${\left(\frac{b}{b}\right)}$ hours	s, then $\left(\frac{k}{\log_e}\right)$	$\left(\frac{1}{2}\right)^2$ is equal	to:	
	(A)	16	(B)	8	(C)	2	(D)	4	
8.	If y	=y(x) is the	e solutio	n of the equ	ation	e ^{sin y} cos y d d	$\frac{y}{x} + e^{\sin y} \cos x$	$x = \cos x, y(0) = 0;$	then
	1+y	$\left(\frac{\pi}{6}\right) + \frac{\sqrt{3}}{2}y\left(\frac{\pi}{3}\right) + \frac{\pi}{3}$	$-\frac{1}{\sqrt{2}}y\left(\frac{\pi}{4}\right)$	is equal to	·				

- 9. The difference between degree and order of a differential equation that represents the family of curves given by $y^2 = a \left(x + \frac{\sqrt{a}}{2} \right), a > 0$ is _____.
- Let $f(x) = \int_{0}^{x} e^{t} f(t)dt + e^{x}$ be a differentiable function for all $x \in R$. Then f(x) equals: 10.
 - - $e^{e^{X}}-1$ **(B)** $2e^{e^{X}}-1$ **(C)** $e^{(e^{X}-1)}$

- Let slope of the tangent line to a curve at any point P(x, y) be given by $\frac{xy^2 + y}{x}$. If the curve intersects 11. the line x + 2y = 4 at x = -2, then the value of y, for which the point (3, y) lies on the curve, is:
- $\frac{18}{35}$ (B) $-\frac{18}{11}$ (C) $-\frac{18}{19}$ (D) $-\frac{4}{3}$
- Let y = y(x) be the solution of the differentiable equation 12.

 $\cos x (3 \sin x + \cos x + 3) dy = (1 + y \sin x (3 \sin x + \cos x + 3)) dx, 0 \le x \le \frac{\pi}{2}, y(0) = 0.$

Then, $y\left(\frac{\pi}{3}\right)$ is equal to :

(A) $2 \log_e \left(\frac{3\sqrt{3} - 8}{4} \right)$

(B) $2 \log_e \left(\frac{\sqrt{3} + 7}{2} \right)$

(C) $2\log_e\left(\frac{2\sqrt{3}+10}{11}\right)$

- **(D)** $2\log_e\left(\frac{2\sqrt{3}+9}{6}\right)$
- 13. In the curve y = y(x) is the solution of the differentiable equation

 $2(x^2 + x^{5/4})dy - y(x + x^{1/4})dx = 2x^{9/4}dx$, x > 0 which passes through the point $\left(1, 1 - \frac{4}{3}\log_e 2\right)$, then

the value of y(16) is equal to:

(A) $4\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$

(B) $\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$

(C) $4\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$

- **(D)** $\left(\frac{31}{3} \frac{8}{3} \log_e 3\right)$
- The differential equation satisfied by the system of parabolas $y^2 = 4a(x + a)$ is: 14.
 - (A) $y \left(\frac{dy}{dx}\right)^2 2x \left(\frac{dy}{dx}\right) + y = 0$
- **(B)** $y\left(\frac{dy}{dx}\right) + 2x\left(\frac{dy}{dx}\right) y = 0$
- (C) $y \left(\frac{dy}{dx}\right)^2 + 2x \left(\frac{dy}{dx}\right) y = 0$
- **(D)** $y\left(\frac{dy}{dx}\right)^2 2x\left(\frac{dy}{dx}\right) y = 0$
- If y = y(x) is the solution of the differential equation $\frac{dy}{dx} + (\tan x)y = \sin x$, $0 \le x \le \frac{\pi}{3}$, with y(0) = 0, then 15. $y\left(\frac{\pi}{4}\right)$ equal to :
 - (A)
- **(B)** $\frac{1}{2}\log_e 2$ **(C)** $\left(\frac{1}{2\sqrt{2}}\right)\log_e 2$ **(D)** $\frac{1}{4}\log_e 2$

Let C_1 be the curve obtained by the solution of differential equation $2xy\frac{dy}{dx} = y^2 - x^2$, x > 0. Let the 16. curve C_2 be the solution of $\frac{2xy}{x^2-y^2} = \frac{dy}{dx}$. If both the curves pass through (1, 1), then the area enclosed by the curves $\,{\it C}_1\,$ and $\,{\it C}_2\,$ is equal to :

(A)

(B) $\frac{\pi}{2} - 1$ **(C)** $\pi - 1$ **(D)** $\frac{\pi}{4} + 1$

Which of the following is true for y(x) that satisfies the differential equation $\frac{dy}{dx} = xy - 1 + x - y$; 17. y(0) = 0:

y(1) = 1 **(B)** $y(1) = e^{\frac{1}{2}} - 1$ **(C)** $y(1) = e^{\frac{1}{2}} - e^{-\frac{1}{2}}$ **(D)** $y(1) = e^{-\frac{1}{2}} - 1$

Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = (y+1)((y+1)e^{x^2/2} - x)$, 0 < x < 2.1, with 18.

y(2) = 0. Then the value of $\frac{dy}{dx}$ at x = 1 is equal to:

(A) $\frac{e^{5/2}}{(1+e^2)^2}$ (B) $\frac{5e^{1/2}}{(e^2+1)^2}$ (C) $\frac{-e^{3/2}}{(e^2+1)^2}$ (D) $-\frac{2e^2}{(1+e^2)^2}$

If y = y(x) is the solution of the differential equation, $\frac{dy}{dx} + 2y \tan x = \sin x$, $y\left(\frac{\pi}{3}\right) = 0$, then the 19. maximum value of the function y(x) over R is equal to :

(B) $\frac{1}{2}$

- Let y=y(x) be the solution of the differential equal to $dy=e^{\alpha x+y}dx$: $\alpha \in \mathbf{N}$. 20. If $y(\log_e 2) = \log_e 2$ and $y(0) = \log_e \left(\frac{1}{2}\right)$, then the value of α is equal to _____.
- Let y = y(x) be the solution of the differential equation $(x x^3)dy = (y + yx^2 3x^4)dx$, x > 2. If y(3) = 3, 21. then y(4) is equal to:

- If y = y(x), $y \in \left[0, \frac{\pi}{2}\right]$ is the solution of the differential equation $\sec y \frac{dy}{dx} \sin(x+y) \sin(x-y) = 0$, 22. with y(0) = 0, then $5y\left(\frac{\pi}{2}\right)$ is equal to _____.
- Let y = y(x) be solution of the differential equation $\log_e \left(\frac{dy}{dx} \right) = 3x + 4y$, with y(0) = 0. 23. If $y\left(-\frac{2}{3}\log_e 2\right) = \alpha\log_e 2$, then the value of α is equal to :

Let a curve y = f(x) pass through the point $(2, (\log_e 2)^2)$ and have slope $\frac{2y}{x \log_e x}$ for all positive real 24. value of x. Then the value of f(e) is equal to _____

- **25.** Let y = y(x) be the solution of the differential equation $x dy = (y + x^3 \cos x) dx$ with $y(\pi) = 0$, then $y\left(\frac{\pi}{2}\right)$ is equal to:
 - (A) $\frac{\pi^2}{2} + \frac{\pi}{4}$ (B) $\frac{\pi^2}{4} \frac{\pi}{2}$ (C) $\frac{\pi^2}{4} + \frac{\pi}{2}$ (D) $\frac{\pi^2}{2} \frac{\pi}{4}$ Let y = y(x) be solution of the following differential equation
- $e^{y}\frac{dy}{dx} 2e^{y}\sin x + \sin x \cos^{2} x = 0, \ y\left(\frac{\pi}{2}\right) = 0.$

26.

If $y(0) = \log_e(\alpha + \beta e^{-2})$, then $4(\alpha + \beta)$ is equal to_____.

- 27. Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = 1 + xe^{y-x}$, $-\sqrt{2} < x < \sqrt{2}$, y(0) = 0 then, the minimum value of y(x), $x \in (-\sqrt{2}, 2)$ is equal to:
 - (A) $(1+\sqrt{3})-\log_e(\sqrt{3}-1)$ (B) $(2+\sqrt{3})+\log_e 2$
 - (C) $(1-\sqrt{3})-\log_e(\sqrt{3}-1)$ (D) $(2-\sqrt{3})-\log_e 2$
- 28. Let y = y(x) be the solution of the differential equation $\left((x+2)e^{\left(\frac{y+1}{x+2}\right)} + (y+1)\right)dx = (x+2)dy$, y(1) = 1.

 If the domain of y = y(x) is an open interval (α, β) , then $|\alpha + \beta|$ is equal to ______.
- 29. Let y = y(x) be the solution of the differential equation $\csc^2 x \, dy + 2 dx = (1 + y \cos 2x) \csc^2 x \, dx$, with $y\left(\frac{\pi}{4}\right) = 0$. Then, the value of $(y(0) + 1)^2$ is equal to:
 - (A) $e^{1/2}$ (B) e (C) $e^{-1/2}$ (D) e^{-1}
- 30. Let a curve y = y(x) be given by the solution of the differential equation $\cos\left(\frac{1}{2}\cos^{-1}(e^{-x})\right)dx = \sqrt{e^{2x} 1}dy$

If it intersects y-axis at y = -1, and the intersection point of the curve with x-axis is $(\alpha, 0)$, then e^{α} is equal to _____.

31. Let y = y(x) satisfies the equation $\frac{dy}{dx} - |A| = 0$, for all x > 0, where $A = \begin{bmatrix} y & \sin x & 1 \\ 0 & -1 & 1 \\ 2 & 0 & \frac{1}{x} \end{bmatrix}$. If $y(\pi) = \pi + 2$,

then the value of $y\left(\frac{\pi}{2}\right)$ is:

- (A) $\frac{\pi}{2} + \frac{4}{\pi}$ (B) $\frac{3\pi}{2} \frac{1}{\pi}$ (C) $\frac{\pi}{2} \frac{4}{\pi}$ (D) $\frac{\pi}{2} \frac{1}{\pi}$
- 32. Let y = y(x) be the solution of the differential equation

$$x \tan\left(\frac{y}{x}\right) dy = \left(y \tan\left(\frac{y}{x}\right) - x\right) dx, -1 \le x \le 1, y \left(\frac{1}{2}\right) = \frac{\pi}{6}.$$

Then the area of the region bounded by the curves x = 0, $x = \frac{1}{\sqrt{2}}$ and y = y(x) in the upper half plane is:

(A)
$$\frac{1}{8}(\pi-1)$$
 (B) $\frac{1}{4}(\pi-2)$ (C) $\frac{1}{6}(\pi-1)$ (D) $\frac{1}{12}(\pi-3)$

Let y = y(x) be the solution of the differential equation $e^x \sqrt{1 - y^2} dx + \left(\frac{y}{x}\right) dy = 0$, y(1) = -133.

Then the value of $(y(3))^2$ is equal to :

(A) $1-4e^3$ (B) $1+4e^6$ (C) $1+4e^3$ (D) $1-4e^6$

Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = 2(y + 2\sin x - 5)x - 2\cos x$ such that 34. y(0) = 7. Then $y(\pi)$ is equal to :

(B) $7e^{\pi^2} + 5$ **(C)** $e^{\pi^2} + 5$ **(D)** $3e^{\pi^2} + 5$

Let us consider a curve, y = f(x) passing through the point (-2, 2) and the slope of the tangent to the 35. curve at any point (x, f(x)) is given by $f(x) + xf'(x) = x^2$. Then:

 $x^3 + xf(x) + 12 = 0$ (A)

(B) $x^2 + 2xf(x) + 4 = 0$

(C) $x^3 - 3xf(x) - 4 = 0$

(D) $x^2 + 2xf(x) - 12 = 0$

Let y(x) be the solution of the differential equation $2x^2dy + (e^y - 2x)dx = 0$, x > 0. If y(e) = 1, then y(1)36. is equal to:

(A) $\log_e 2$ $\log_e(2e)$

(C)

Let y = y(x) be a solution curve of the differential equation $(y+1) \tan^2 x \, dx + \tan x \, dy + y \, dx = 0$, 37. $x \in \left(0, \frac{\pi}{2}\right)$. If $\lim_{x \to 0^+} xy(x) = 1$, then the value of $y\left(\frac{\pi}{4}\right)$ is:

(A) $\frac{\pi}{4} + 1$ (B) $\frac{\pi}{4} - 1$ (C) $-\frac{\pi}{4}$ (D) $\frac{\pi}{4}$

If y = y(x) is the solution curve of the differential equation $x^2 dy + \left(y - \frac{1}{x}\right) dx = 0$; x > 0, and y(1) = 1, then 38. $y\left(\frac{1}{2}\right)$ is equal to:

(A) 3-e (B) $3+\frac{1}{\sqrt{e}}$ (C) 3+e (D) $\frac{3}{2}-\frac{1}{\sqrt{e}}$

If $\frac{dy}{dx} = \frac{2^{X+y} - 2^X}{2^y}$, y(0) = 1, then y(1) is equal to: 39.

 $\log_2(1+e)$

(B) $\log_2(2e)$

(C) $\log_2(2+e)$ (D) $\log_2(1+e^2)$

If the solution curve of the differential equation $(2x-10y^3)dy + ydx = 0$, passes through the points 40. (0, 1) and $(2, \beta)$, then β is a root of the equation :

(A) $2y^5 - y^2 - 2 = 0$

(B) $y^5 - y^2 - 1 = 0$

(C) $v^5 - 2v - 2 = 0$

(D) $2v^5 - 2v - 1 = 0$

JEE Advanced 2021

For any real numbers α and β , let $y_{\alpha,\beta}(x), x \in \mathbb{R}$, be the solution of the differential equation

$$\frac{dy}{dx} + \alpha y = xe^{\beta X}, y(1) = 1.$$

Let $S = \{y_{\alpha,\beta}(x) : \alpha, \beta \in \mathbb{R}\}$. Then which of the following functions belong(s) to the set S?

(A)
$$f(x) = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

(B)
$$f(x) = -\frac{x^2}{2}e^{-x} + \left(e + \frac{1}{2}\right)e^{-x}$$

(C)
$$f(x) = \frac{e^x}{2} \left(x - \frac{1}{2} \right) + \left(e - \frac{e^2}{4} \right) e^{-x}$$

$$f(x) = \frac{e^x}{2} \left(x - \frac{1}{2} \right) + \left(e - \frac{e^2}{4} \right) e^{-x}$$
 (D)
$$f(x) = \frac{e^x}{2} \left(\frac{1}{2} - x \right) + \left(e + \frac{e^2}{4} \right) e^{-x}$$

Question Stem for Question Nos. 2 and 3

Question Stem

Let $f_1:(0,\infty)\to\mathbb{R}$ and $f_2:(0,\infty)\to\mathbb{R}$ be defined by

$$f_1(x) = \int_{0}^{x} \prod_{j=1}^{21} (t-j)^j dt$$
, $x > 0$ and $f_2(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450$, $x > 0$,

Where, for any positive integer n and real numbers $a_1, a_2, ..., a_n, \prod_{i=1}^n a_i$ denotes the product of $a_1, a_2, ..., a_n$. Let m_i and n_i , respectively, denote the number of points of local minima and the number of points of local maximum of function f_i , i = 1, 2, in the interval $(0, \infty)$.

- 2. The value of $2m_1 + 3n_1 + m_1n_1$ is _____.
- 3. The value of $6m_2 + 4n_2 + 8m_2n_2$ is ______.

Differential Equations

Class - XII | Mathematics

JEE Main 2022

1.	If $\frac{dy}{dx} + 2y \tan x = \sin x$	x , $0 < x < \frac{\pi}{2}$ and y	$\left(\frac{\pi}{3}\right) = 0$	then the maximum	n value of $y(x)$ is
----	---	---------------------------------------	----------------------------------	------------------	----------------------

- (A) $\frac{1}{8}$ (B) $\frac{3}{4}$ (C) $\frac{1}{4}$ (D) $\frac{3}{8}$

For the curve $C: \left(x^2+y^2-3\right)+\left(x^2-y^2-1\right)^5=0$, the value of $3y'-y^3y''$, at the point $\left(\alpha,\alpha\right)$, $\alpha>0$, on 2. C, is equal to____

Suppose y = y(x) be the solution curve to the differential equation $\frac{dy}{dx} - y = 2 - e^{-x}$ such that $\lim_{x \to \infty} y(x)$ 3. is finite. If a and b are respectively the x- and y- intercepts of the tangent to the curve at x = 0, then the value of a - 4b is equal to _____

Let the solution curve y = f(x) of the differential equation $\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}}, x \in (-1, 1)$ pass 4.

through the origin. Then $\int_{-\sqrt{3}}^{\sqrt{3}} f(x)dx$ is equal to:

- (A) $\frac{\pi}{3} \frac{1}{4}$ (B) $\frac{\pi}{3} \frac{\sqrt{3}}{4}$ (C) $\frac{\pi}{6} \frac{\sqrt{3}}{4}$ (D) $\frac{\pi}{6} \frac{\sqrt{3}}{2}$

Let the solution curve y = y(x) of the differential equation $(1 + e^{2x})(\frac{dy}{dx} + y) = 1$ pass through the point 5. $\left(0, \frac{\pi}{2}\right)$. Then, $\lim_{x \to \infty} e^x y(x)$ is equal to:

- (A) $\frac{\pi}{4}$ (B) $\frac{3\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{2}$

If x = x(y) is the solution of the differential equation $y \frac{dx}{dy} = 2x + y^3(y+1)e^y$, x(1) = 0; then x(e) is equal 6.

- $e^{3}(e^{e}-1)$ (B) $e^{e}(e^{3}-1)$ (C) $e^{2}(e^{e}+1)$ (D) $e^{e}(e^{2}-1)$

If y = y(x) is the solution of the differential equation $2x^2 \frac{dy}{dx} - 2xy + 3y^2 = 0$ such that $y(e) = \frac{e}{3}$, then 7. y(1) is equal to:

- (A)
- **(B)** $\frac{2}{3}$
- (C) $\frac{3}{2}$
- (D) 3

8.	Let y	= y(x) be the sol	ution of t	the differential e	equatior	(x+1)y'-y'	$y = e^{3x}(x+1)^2$	with $y(0) = \frac{1}{3}$. Then, the
	point	$x = -\frac{4}{3}$ for the cu	urve y=y	v(x) is:				
	(A)	Not a critical p	oint		(B)	A point	of local minim	a
	(C)	A point of loca	I maxima	1	(D)	A point	of inflection	
9.	If the	e solution curve	v = v(x)	of the differe	ential ec	uation v ²	$dx + (x^2 - xy +$	y^2) $dy=0$, which passes
								hen value of $\log_e(\sqrt{3}\alpha)$ is
	equal		i) and in	ersects the mic	y – 432	at the po	iiπ (α, γ οα) , τ	rien value of log _e (voa) is
	•			π		π		π
	(A)	$\frac{\pi}{3}$	(B)	$\frac{\pi}{2}$	(C)	12	(D)	6
10.	If the	solution of the d	ifferentia	I equation $\frac{dy}{dx}$ +	$-e^{x}(x^{2}-$	$-2)y=(x^2-$	$-2x)(x^2-2)e^2$	satisfies $y(0) = 0$, then
	the va	lue of y(2) is	··					
	(A)	-1	(B)	1	(C)	0	(D)	е
11.		ne solution cui gh the origin. The					$(4+x^2)dy-2$	$2x(x^2+3y+4)dx=0 \text{ pass}$
12.	Let S	$=(0,2\pi)-\left\{\frac{\pi}{2},\frac{3\pi}{4}\right\}$	$\left\{\frac{3\pi}{2}, \frac{7\pi}{4}\right\}$. Let $y = y(x)$,	<i>x</i> ∈ <i>S</i> , b∈	the solut	ion curve of	the differential equation
	$\frac{dy}{dx} = \frac{1}{2}$	$\frac{1}{1+\sin 2x}$, $y\left(\frac{\pi}{4}\right)$	$=\frac{1}{2}$. If 1	the sum of ab	scissas	of all the	e points of ir	ntersection of the curve
	<i>y</i> = <i>y</i> (.	x) with the curve	$y = \sqrt{2}$	$\sin x$) is $\frac{k\pi}{12}$, the	en <i>k</i> is ed	qual to	·	
13.					()	, ,	,	passes through the point
	(1,0),	then the absciss	sa of the p	point on the cur	rve whos	se ordinate	is $tan(1)$, is:	
	(A)	2 <i>e</i>	(B)	$\frac{2}{e}$	(C)	2	(D)	$\frac{1}{e}$
14.	If $y(x)$	$) = \left(x^X \right)^X, x > 0, $	then $\frac{d^2}{dy^2}$	$\frac{x}{2} + 20$ at $x = 1$	is equa	I to		
15.	Let y	=y(x) be the so	lution of	the differential	equation	ו		
							1	
			+ 2)√1 -	$\sqrt{x^2}$ dx , $-1 < x < 1$	< 1, and <u>;</u>	y(0) = 0. I	$f \int_{\frac{-1}{2}}^{\frac{\pi}{2}} \sqrt{1 - x^2} y$	$y(x)dx = k$, then k^{-1} is
		to						
16.	Let $\frac{d}{d}$	$\frac{y}{x} = \frac{ax - by + a}{bx + cy + a},$	where a,	b, c are consta	ants, rep	oresent a c	ircle passing	through the point $(2,5)$.
	Then	the shortest dista	ance of th	ne point (11, 6)	from thi	s circle is:		

(B)

8

(C)

7

10

(A)

5

(D)

17. If
$$\cos^{-1}\left(\frac{y}{2}\right) = \log_{e}\left(\frac{x}{5}\right)^{5}$$
, $|y| < 2$, then:

(A)
$$x^2y'' + xy' - 25y = 0$$

(B)
$$x^2y''-xy'-25y=0$$

(C)
$$x^2y''-xy'+25y=0$$

(D)
$$x^2y'' + xy' + 25y = 0$$

18. If
$$\frac{dy}{dx} + \frac{2^{x-y}(2^y-1)}{2^x-1} = 0, x, y > 0, y(1) = 1$$
, then $y(2)$ is equal to:

(A)
$$2 + \log_2 3$$

(B)
$$2 + \log_2 2$$

(A)
$$2 + \log_2 3$$
 (B) $2 + \log_3 2$ (C) $2 - \log_3 2$ (D) $2 - \log_2 3$

(D)
$$2 - \log_2 3$$

19. Let
$$x = x(y)$$
 be the solution of the differential equation $2ye^{x/y^2}dx + (y^2 - 4xe^{x/y^2})dy = 0$ such that $x(1) = 0$. Then, $x(e)$ is equal to:

(A)
$$e \log_e(2)$$
 (B)

(B)
$$-e \log_e(2)$$

(C)
$$e^2 \log_e (2)$$

(C)
$$e^2 \log_e(2)$$
 (D) $-e^2 \log_e(2)$

20. Let the solution curve
$$y = y(x)$$
 of the differential equation

$$\left[\frac{x}{\sqrt{x^2 - y^2}} + e^{\frac{y}{x}}\right] x \frac{dy}{dx} = x + \left[\frac{x}{\sqrt{x^2 - y^2}} + e^{\frac{y}{x}}\right] y$$

Pass through the points (1, 0) and $(2\alpha, \alpha)$, $\alpha > 0$. Then α is equal to:

(A)
$$\frac{1}{2}\exp\left(\frac{\pi}{6}+\sqrt{e}-1\right)$$

$$(B) \qquad \frac{1}{2} \exp\left(\frac{\pi}{3} + e - 1\right)$$

(C)
$$\exp\left(\frac{\pi}{6} + \sqrt{e} + 1\right)$$

(D)
$$2\exp\left(\frac{\pi}{3}+\sqrt{e}-1\right)$$

21. Let
$$y = y(x)$$
 be the solution of the differential equation $x\left(1-x^2\right)\frac{dy}{dx} + \left(3x^2y - y - 4x^3\right) = 0$, $x > 1$, with $y(2) = -2$. Then $y(3)$ is equal to:

22. If
$$y = y(x)$$
 is the solution of the differential equation $(1 + e^{2x})\frac{dy}{dx} + 2(1 + y^2)e^x = 0$ and $y(0) = 0$, then $6\left(y'(0) + (y(\log_e \sqrt{3}))^2\right)$ is equal to:

23. Let
$$y = y(x)$$
, $x > 1$, be the solution of the differential equation $(x - 1)\frac{dy}{dx} + 2xy = \frac{1}{x - 1}$, with $y(2) = \frac{1 + e^4}{2e^4}$. If $y(3) = \frac{e^{\alpha} + 1}{\beta e^{\alpha}}$, then the value of $\alpha + \beta$ is equal to _____.

24. Let the solutions curve of the differential equation:

$$x \frac{dy}{dx} - y = \sqrt{y^2 + 16x^2}$$
, $y(1) = 3$ be $y = y(x)$. Then $y(2)$ is equal to:

25. Let
$$y = y(x)$$
 be the solution of the

$$\frac{dy}{dx} + \frac{\sqrt{2}y}{2\cos^4 x - \cos 2x} = xe^{\tan^{-1}(\sqrt{2}\cot 2x)}, 0 < x < \frac{\pi}{2} \text{ with } y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{32}. \text{ If } y\left(\frac{\pi}{3}\right) = \frac{\pi^2}{18}e^{-\tan^{-1}(\alpha)}, \text{ then the}$$

value of
$$3\alpha^2$$
 is equal to _____.

- If the solution curve of the differential equation $\frac{dy}{dx} = \frac{x+y-2}{x-y}$ passes through the points (2,1) and 26. (k+1,2), k>0, then
 - (A) $2 \tan^{-1} \left(\frac{1}{k} \right) = \log_e \left(k^2 + 1 \right)$ (B) $\tan^{-1} \left(\frac{1}{k} \right) = \log_e \left(k^2 + 1 \right)$
 - (C) $2\tan^{-1}\left(\frac{1}{k+1}\right) = \log_e\left(k^2 + 2k + 2\right)$ (D) $2\tan^{-1}\left(\frac{1}{k}\right) = \log_e\left(\frac{k^2 + 1}{k^2}\right)$
- Let y = y(x) be the solution curve 27. differential equation $\frac{dy}{dx} + \left(\frac{2x^2 + 11x + 13}{x^3 + 6x^2 + 11x + 6}\right)y = \frac{(x+3)}{x+1}, x > -1, \text{ which passes through the point (0, 1). The } y(1) \text{ is equal to}$
 - (A) $\frac{1}{2}$ (B) $\frac{3}{2}$ (C) $\frac{5}{2}$ (D) $\frac{7}{2}$